136 resultados para stochastic modeling
Resumo:
The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear character that have made Feller process a convenient candidate for the modeling of a number of phenomena ranging from single-neuron firing to volatility of financial assets. While general properties of the process have long been well known, less known are properties related to level crossing such as the first-passage and the escape problems. In this work we thoroughly address these questions.
Resumo:
We present a novel scheme for the appearance of stochastic resonance when the dynamics of a Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an entropic contribution to the potential, may upon application of a periodic driving force result in an increase of the spectral amplification at an optimum value of the ambient noise level. The entropic stochastic resonance, characteristic of small-scale systems, may constitute a useful mechanism for the manipulation and control of single molecules and nanodevices.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
Based on provious (Hemelrijk 1998; Puga-González, Hildenbrant & Hemelrijk 2009), we have developed an agent-based model and software, called A-KinGDom, which allows us to simulate the emergence of the social structure in a group of non-human primates. The model includes dominance and affiliative interactions and incorporate s two main innovations (preliminary dominance interactions and a kinship factor), which allow us to define four different attack and affiliative strategies. In accordance with these strategies, we compared the data obtained under four simulation conditions with the results obtained in a provious study (Dolado & Beltran 2012) involving empirical observations of a captive group of mangabeys (Cercocebus torquatus)
Resumo:
Low-copy-number molecules are involved in many functions in cells. The intrinsic fluctuations of these numbers can enable stochastic switching between multiple steady states, inducing phenotypic variability. Herein we present a theoretical and computational study based on Master Equations and Fokker-Planck and Langevin descriptions of stochastic switching for a genetic circuit of autoactivation. We show that in this circuit the intrinsic fluctuations arising from low-copy numbers, which are inherently state-dependent, drive asymmetric switching. These theoretical results are consistent with experimental data that have been reported for the bistable system of the gallactose signaling network in yeast. Our study unravels that intrinsic fluctuations, while not required to describe bistability, are fundamental to understand stochastic switching and the dynamical relative stability of multiple states.
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7-8 October 2012, and the period following a fast solar wind stream on 25-26 October 2012 to within a factor of 5 or so. At lower energies of 10- a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.
Resumo:
In this paper we propose a method for computing JPEG quantization matrices for a given mean square error or PSNR. Then, we employ our method to compute JPEG standard progressive operation mode definition scripts using a quantization approach. Therefore, it is no longer necessary to use a trial and error procedure to obtain a desired PSNR and/or definition script, reducing cost. Firstly, we establish a relationship between a Laplacian source and its uniform quantization error. We apply this model to the coefficients obtained in the discrete cosine transform stage of the JPEG standard. Then, an image may be compressed using the JPEG standard under a global MSE (or PSNR) constraint and a set of local constraints determined by the JPEG standard and visual criteria. Secondly, we study the JPEG standard progressive operation mode from a quantization based approach. A relationship between the measured image quality at a given stage of the coding process and a quantization matrix is found. Thus, the definition script construction problem can be reduced to a quantization problem. Simulations show that our method generates better quantization matrices than the classical method based on scaling the JPEG default quantization matrix. The estimation of PSNR has usually an error smaller than 1 dB. This figure decreases for high PSNR values. Definition scripts may be generated avoiding an excessive number of stages and removing small stages that do not contribute during the decoding process with a noticeable image quality improvement.
Resumo:
Panel data can be arranged into a matrix in two ways, called 'long' and 'wide' formats (LFand WF). The two formats suggest two alternative model approaches for analyzing paneldata: (i) univariate regression with varying intercept; and (ii) multivariate regression withlatent variables (a particular case of structural equation model, SEM). The present papercompares the two approaches showing in which circumstances they yield equivalent?insome cases, even numerically equal?results. We show that the univariate approach givesresults equivalent to the multivariate approach when restrictions of time invariance (inthe paper, the TI assumption) are imposed on the parameters of the multivariate model.It is shown that the restrictions implicit in the univariate approach can be assessed bychi-square difference testing of two nested multivariate models. In addition, commontests encountered in the econometric analysis of panel data, such as the Hausman test, areshown to have an equivalent representation as chi-square difference tests. Commonalitiesand differences between the univariate and multivariate approaches are illustrated usingan empirical panel data set of firms' profitability as well as a simulated panel data.
Resumo:
The disintegration of recovered paper is the first operation in the preparation of recycled pulp. It is known that the defibering process follows a first order kinetics from which it is possible to obtain the disintegration kinetic constant (KD) by means of different ways. The disintegration constant can be obtained from the Somerville index results (%lsv and from the dissipated energy per volume unit (Ss). The %slv is related to the quantity of non-defibrated paper, as a measure of the non-disintegrated fiber residual (percentage of flakes), which is expressed in disintegration time units. In this work, disintegration kinetics from recycled coated paper has been evaluated, working at 20 revise rotor speed and for different fiber consistency (6, 8, 10, 12 and 14%). The results showed that the values of experimental disintegration kinetic constant, Ko, through the analysis of Somerville index, as function of time. Increased, the disintegration time was drastically reduced. The calculation of the disintegration kinetic constant (modelled Ko), extracted from the Rayleigh’s dissipation function, showed a good correlation with the experimental values using the evolution of the Somerville index or with the dissipated energy
Resumo:
Both the intermolecular interaction energies and the geometries for M ̄ thiophene, M ̄ pyrrole, M n+ ̄ thiophene, and M n+ ̄ pyrrole ͑with M = Li, Na, K, Ca, and Mg; and M n+ = Li+ , Na+ , K+ , Ca2+, and Mg2+͒ have been estimated using four commonly used density functional theory ͑DFT͒ methods: B3LYP, B3PW91, PBE, and MPW1PW91. Results have been compared to those provided by HF, MP2, and MP4 conventional ab initio methods. The PBE and MPW1PW91 are the only DFT methods able to provide a reasonable description of the M ̄ complexes. Regarding M n+ ̄ complexes, the four DFT methods have been proven to be adequate in the prediction of these electrostatically stabilized systems, even though they tend to overestimate the interaction energies.
Resumo:
Lying at the core of statistical physics is the need to reduce the number of degrees of freedom in a system. Coarse-graining is a frequently-used procedure to bridge molecular modeling with experiments. In equilibrium systems, this task can be readily performed; however in systems outside equilibrium, a possible lack of equilibration of the eliminated degrees of freedom may lead to incomplete or even misleading descriptions. Here, we present some examples showing how an improper coarse-graining procedure may result in linear approaches to nonlinear processes, miscalculations of activation rates and violations of the fluctuation-dissipation theorem.
Resumo:
In this paper we study the existence of a unique solution for linear stochastic differential equations driven by a Lévy process, where the initial condition and the coefficients are random and not necessarily adapted to the underlying filtration. Towards this end, we extend the method based on Girsanov transformations on Wiener space and developped by Buckdahn [7] to the canonical Lévy space, which is introduced in [25].