160 resultados para quantum fields
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
We present an exact solution for the order parameters that characterize the stationary behavior of a population of Kuramotos phase oscillators under random external fields [Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol. 39 (Springer, Berlin, 1975), p. 420]. From these results it is possible to generate the phase diagram of models with an arbitrary distribution of random frequencies and random fields.
Resumo:
The recent observation of steps at regular intervals of magnetic field in the hysteresis loops of oriented crystals of the spin-10 molecular magnet Mn12O12(CH3COO)16(H2O)4 has been attributed to resonant tunneling between spin states. Here, we investigate the effect on the relaxation rate of applying the magnetic field at an angle with respect to the easy axis of magnetization. We find that the position of the resonances is independent of the transverse component of the field, and is determined solely by the longitudinal component. On the other hand, a transverse field significantly increases the relaxation rate, both on and off resonance. We discuss classical and quantum mechanical interpretations of this effect
Resumo:
We present a study of the magnetic relaxation of several ferrofluids composed of particles of about 40 Å in diameter (Fe3O4FeC, CoFe2O4). Our key observation is a nonthermal character of the relaxation below 3 K for the CoFe2O4 ferrofluid and below 1 K for the FeC ferrofluid. The crossover temperature from thermal to nonthermal (quantum) regime is in accordance with theoretical suggestions of macroscopic quantum tunneling of magnetization in single doma in particles
Resumo:
We present a theoretical study of the quantum depinning of domain walls. Our approach extends earlier work by Stamp and confirms his suggestion that quantum tunneling of domain walls in ferromagnets may reveal itself at a macroscopic level in a manner similar to the Josephson effect in superconductors. The rate of tunneling of a domain wall through a barrier formed by a planar defect is calculated in terms of macroscopic parameters of the ferromagnet. A universal behavior of the WKB exponent in the limit of small barriers is demonstrated. The effect of dissipation on the tunneling rate is studied. It is argued that quantum diffusion of domain walls apparently explains a nonthermal magnetic relaxation observed in some materials at low temperatures.
Resumo:
We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified.
Resumo:
We deal with a classical predictive mechanical system of two spinless charges where radiation is considered and there are no external fields. The terms (2,2)Paa of the expansion in the charges of the HamiltonJacobi momenta are calculated. Using these, together with known previous results, we can obtain the paa up to the fourth order. Then we have calculated the radiated energy and the 3-momentum in a scattering process as functions of the impact parameter and the incident energy for the former and 3-momentum for the latter. Scattering cross-sections are also calculated. Good agreement with well known results, including those of quantum electrodynamics, has been found.
Resumo:
The Meissner and diamagnetic shielding effects and the upper, lower, and thermodynamical critical fields have been studied in a Ba2HoCu3O7-x sample using magnetization measurements in fields up to 55 kOe. The diamagnetic shielding curve shows the existence of a transition at Tc=91.5 K followed by a broad transition extending from 85 to 25 K which may be related to inhomogeneities in the oxygen content of the sample. A rather low flux expulsion (13.5%) is observed which we attribute to flux pinning or trapping. We show that the coexistence of superconducting and nonsuperconducting regions within the sample at temperatures just below Tc leads to strong reductions in the critical magnetic fields.
Resumo:
We present a comprehensive study of the low-temperature magnetic relaxation in random magnets. The first part of the paper contains theoretical analysis of the expected features of the relaxation, based upon current theories of quantum tunneling of magnetization. Models of tunneling, dissipation, the crossover from the thermal to the quantum regime, and the effect of barrier distribution on the relaxation rate are discussed. It is argued that relaxation-type experiments are ideally suited for the observation of magnetic tunneling, since they automatically provide the condition of very low barriers. The second part of the paper contains experimental results on transition-metal¿rare-earth amorphous magnets. Structural and magnetic characterization of materials is presented. The temperature and field dependence of the magnetic relaxation is studied. Our key observation is a nonthermal character of the relaxation below a few kelvin. The observed features are in agreement with theoretical suggestions on quantum tunneling of magnetization.