334 resultados para The American Folklore Society (AFS)
Resumo:
The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework, taking into account thermal and expansion effects. A finite-range momentum and density-dependent two-body effective interaction is employed for this purpose. The role of mass, isospin, and equation of state (EOS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.
Resumo:
We reanalyze the decay mode of Lambda hypernuclei induced by two nucleons modifying previous numerical results and the interpretation of the process. The repercussions of this channel in the ratio of neutron to proton induced Lambda decay is studied in detail in connection with the present experimental data. This leads to ratios that are in greater contradiction with usual one pion exchange models than those deduced before.
Resumo:
We comment on a recent paper by Uma Maheswari et al. in which it is claimed that quantal calculations of the half-infinite nuclear matter, in contrast to semiclassical approximations, exhibit an unusually strong dependence of the 90%10% surface thickness of the density profile on the Fermi momentum kF at saturation. This conclusion was carried over to the surface incompressibility. On the contrary we find essential agreement between semiclassical and quantal results and very weak dependence on kF of the quantities in question.
Resumo:
A new method to solve the Lorentz-Dirac equation in the presence of an external electromagnetic field is presented. The validity of the approximation is discussed, and the method is applied to a particle in the presence of a constant magnetic field.
Resumo:
We consider the two Higgs doublet model extension of the standard model in the limit where all physical scalar particles are very heavy, too heavy, in fact, to be experimentally produced in forthcoming experiments. The symmetry-breaking sector can thus be described by an effective chiral Lagrangian. We obtain the values of the coefficients of the O(p4) operators relevant to the oblique corrections and investigate to what extent some nondecoupling effects may remain at low energies. A comparison with recent CERN LEP data shows that this model is indistinguishable from the standard model with one doublet and with a heavy Higgs boson, unless the scalar mass splittings are large.
Resumo:
We study the decay of an unstable state in the presence of colored noise by calculating the moment generating function of the passage-time distribution. The problems of the independence of the initial condition in this non-Markovian process and that of nonlinear effects are addressed. Our results are compared with recent analog simulations.
Resumo:
We study spacetime diffeomorphisms in the Hamiltonian and Lagrangian formalisms of generally covariant systems. We show that the gauge group for such a system is characterized by having generators which are projectable under the Legendre map. The gauge group is found to be much larger than the original group of spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to general relativity.
Resumo:
Exact solutions of the classical equations corresponding to the leading-logarithm approximation are obtained. They are classified by an (integer) topological number.
Resumo:
We develop a singular perturbation approach to the problem of the calculation of a characteristic time (the nonlinear relaxation time) for non-Markovian processes driven by Gaussian colored noise with small correlation time. Transient and initial preparation effects are discussed and explicit results for prototype situations are obtained. New effects on the relaxation of unstable states are predicted. The approach is compared with previous techniques.