224 resultados para Statistical thermodynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat fluctuation probability distribution function in Brownian transducers operating between two heat reservoirs is studied. We find, both analytically and numerically, that the recently proposed fluctuation theorem for heat exchange [C. Jarzynski and D. K. Wojcik, Phys. Rev. Lett. 92, 230602 (2004)] has to be applied carefully when the coupling mechanism between both baths is considered. We also conjecture how to extend such a relation when an external work is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model exhibiting a noise-induced ordering transition (NIOT) and a noise-induced disordering transition (NIDT), in which the noise is purely multiplicative, is presented. Both transitions are found in two dimensions as well as in one dimension. We show analytically and numerically that the critical behavior of these two transitions is described by the so called multiplicative noise (MN) universality class. A computation of the set of critical exponents is presented in both d=1 and d=2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effect of multiplicative noise in the time-dependent Ginzburg-Landau model is reported, namely, that noise at a relatively low intensity induces a phase transition towards an ordered state, whereas strong noise plays a destructive role, driving the system back to its disordered state through a reentrant phase transition. The phase diagram is calculated analytically using a mean-field theory and a more sophisticated approach and is compared with the results from extensive numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of Monte Carlo simulations with the aim to clarify the microscopic origin of exchange bias in the magnetization hysteresis loops of a model of individual core/shell nanoparticles. Increase of the exchange coupling across the core/shell interface leads to an enhancement of exchange bias and to an increasing asymmetry between the two branches of the loops which is due to different reversal mechanisms. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that the existence of a net magnetization due to uncompensated spins at the shell interface is responsible for both phenomena and allows to quantify the loop shifts directly in terms of microscopic parameters with striking agreement with the macroscopic observed values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collective dynamic properties in Lennard-Jones crystals are investigated by molecular dynamics simulation. The study is focused on properties such as the dynamic structure factors, the longitudinal and transverse currents and the density of states. The influence on these properties of the structural disorder is analyzed by comparing the results for one-component crystals with those for liquids and supercooled liquids at analogous conditions. The effects of species-disorder on the collective properties of binary crystals are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We point out that using the heat kernel on a cone to compute the first quantum correction to the entropy of Rindler space does not yield the correct temperature dependence. In order to obtain the physics at arbitrary temperature one must compute the heat kernel in a geometry with different topology (without a conical singularity). This is done in two ways, which are shown to agree with computations performed by other methods. Also, we discuss the ambiguities in the regularization procedure and their physical consequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

rg model with A3 potential. The holographically dual field theories provide the description of the microscopic degrees of freedom which underlie all of the thermodynamics, as can be seen by examining the form of the microscopic fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the recent microscopic analysis of extremal dyonic Kaluza-Klein (D0-D6) black holes to cover the regime of fast rotation in addition to slow rotation. Fastly rotating black holes, in contrast to slow ones, have nonzero angular velocity and possess ergospheres, so they are more similar to the Kerr black hole. The D-brane model reproduces their entropy exactly, but the mass gets renormalized from weak to strong coupling, in agreement with recent macroscopic analyses of rotating attractors. We discuss how the existence of the ergosphere and superradiance manifest themselves within the microscopic model. In addition, we show in full generality how Myers-Perry black holes are obtained as a limit of Kaluza-Klein black holes, and discuss the slow and fast rotation regimes and superradiance in this context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the effects of the addition of external noise to nondynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of nondynamical systems, covering situations of different nature. Some particular examples are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a class of systems for which the signal-to-noise ratio always increases when increasing the noise and diverges at infinite noise level. This new phenomenon is a direct consequence of the existence of a scaling law for the signal-to-noise ratio and implies the appearance of stochastic resonance in some monostable systems. We outline applications of our results to a wide variety of systems pertaining to different scientific areas. Two particular examples are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a class of systems for which the signal-to-noise ratio as a function of the noise level may display a multiplicity of maxima. This phenomenon, referred to as stochastic multiresonance, indicates the possibility that periodic signals may be enhanced at multiple values of the noise level, instead of at a single value which has occurred in systems considered up to now in the framework of stochastic resonance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solvable model of synchronization dynamics is introduced. It consists of a system of long range interacting tops or magnetic moments with random precession frequencies. The model allows for an explicit study of orientational effects in synchronization phenomena as well as nonlinear processes in resonance phenomena in strongly coupled magnetic systems. A stability analysis of the incoherent solution is performed for different types of orientational disorder. A system with orientational disorder always synchronizes in the absence of noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Populations of phase oscillators interacting globally through a general coupling function f(x) have been considered. We analyze the conditions required to ensure the existence of a Lyapunov functional giving close expressions for it in terms of a generating function. We have also proposed a family of exactly solvable models with singular couplings showing that it is possible to map the synchronization phenomenon into other physical problems. In particular, the stationary solutions of the least singular coupling considered, f(x) = sgn(x), have been found analytically in terms of elliptic functions. This last case is one of the few nontrivial models for synchronization dynamics which can be analytically solved.