119 resultados para Spatial data warehouse
Resumo:
ABSTRACT The measure and estimation of income levels in Barcelona Metropolitan Area (BMA) goes back a long way. Using different approaches and focusing on different municipalities, there is a lot of work in the field. The majority of the literature has focused on the estimation of income levels using variables related to consumption. The empirical evidence on wage differentials has shown an important growth during 80’s and 90’s especially in United Kingdom and USA. Less is known on spatial distribution of inequality. This paper presents a new data set for analyzing spatial distribution of wage income. This data is obtained by matching Wage Structure Survey (WSS) with data from Census disaggregated by census tracts. In this way we have a unique data set with wage incomes for every census track for 36 municipalities belonging to BMA. We develop a descriptive analysis of spatial distribution, testing for spatial autocorrelation and use the family of Generalised Entropy Indices to measure inequality. Properties of the index allow us to decompose inequality into inter and intra-municipality measures. Since we have two cross-sectional data for WSS (1995-2002) we can also analyze the evolution of the inequality in this period of economic growth. Key words: spatial distribution of wages, spatial autocorrelation, inequality indices.
Resumo:
Empirical studies on the determinants of industrial location typically use variables measured at the available administrative level (municipalities, counties, etc.). However, this amounts to assuming that the effects these determinants may have on the location process do not extent beyond the geographical limits of the selected site. We address the validity of this assumption by comparing results from standard count data models with those obtained by calculating the geographical scope of the spatially varying explanatory variables using a wide range of distances and alternative spatial autocorrelation measures. Our results reject the usual practice of using administrative records as covariates without making some kind of spatial correction. Keywords: industrial location, count data models, spatial statistics JEL classification: C25, C52, R11, R30
Resumo:
The aim of this paper is to analyse the colocation patterns of industries and firms. We study the spatial distribution of firms from different industries at a microgeographic level and from this identify the main reasons for this locational behaviour. The empirical application uses data from Mercantile Registers of Spanish firms (manufacturers and services). Inter-sectorial linkages are shown using self-organizing maps. Key words: clusters, microgeographic data, self-organizing maps, firm location JEL classification: R10, R12, R34
Resumo:
In an earlier investigation (Burger et al., 2000) five sediment cores near the RodriguesTriple Junction in the Indian Ocean were studied applying classical statistical methods(fuzzy c-means clustering, linear mixing model, principal component analysis) for theextraction of endmembers and evaluating the spatial and temporal variation ofgeochemical signals. Three main factors of sedimentation were expected by the marinegeologists: a volcano-genetic, a hydro-hydrothermal and an ultra-basic factor. Thedisplay of fuzzy membership values and/or factor scores versus depth providedconsistent results for two factors only; the ultra-basic component could not beidentified. The reason for this may be that only traditional statistical methods wereapplied, i.e. the untransformed components were used and the cosine-theta coefficient assimilarity measure.During the last decade considerable progress in compositional data analysis was madeand many case studies were published using new tools for exploratory analysis of thesedata. Therefore it makes sense to check if the application of suitable data transformations,reduction of the D-part simplex to two or three factors and visualinterpretation of the factor scores would lead to a revision of earlier results and toanswers to open questions . In this paper we follow the lines of a paper of R. Tolosana-Delgado et al. (2005) starting with a problem-oriented interpretation of the biplotscattergram, extracting compositional factors, ilr-transformation of the components andvisualization of the factor scores in a spatial context: The compositional factors will beplotted versus depth (time) of the core samples in order to facilitate the identification ofthe expected sources of the sedimentary process.Kew words: compositional data analysis, biplot, deep sea sediments
Resumo:
First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by asimplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able togenerate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow definingmonitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated
Resumo:
Many terrestrial and marine systems are experiencing accelerating decline due to the effects of global change. This situation has raised concern about the consequences of biodiversity losses for ecosystem function, ecosystem service provision, and human well-being. Coastal marine habitats are a main focus of attention because they harbour a high biological diversity, are among the most productive systems of the world and present high anthropogenic interaction levels. The accelerating degradation of many terrestrial and marine systems highlights the urgent need to evaluate the consequence of biodiversity loss. Because marine biodiversity is a dynamic entity and this study was interested global change impacts, this study focused on benthic biodiversity trends over large spatial and long temporal scales. The main aim of this project was to investigate the current extent of biodiversity of the high diverse benthic coralligenous community in the Mediterranean Sea, detect its changes, and predict its future changes over broad spatial and long temporal scales. These marine communities are characterized by structural species with low growth rates and long life spans; therefore they are considered particularly sensitive to disturbances. For this purpose, this project analyzed permanent photographic plots over time at four locations in the NW Mediterranean Sea. The spatial scale of this study provided information on the level of species similarity between these locations, thus offering a solid background on the amount of large scale variability in coralligenous communities; whereas the temporal scale was fundamental to determine the natural variability in order to discriminate between changes observed due to natural factors and those related to the impact of disturbances (e.g. mass mortality events related to positive thermal temperatures, extreme catastrophic events). This study directly addressed the challenging task of analyzing quantitative biodiversity data of these high diverse marine benthic communities. Overall, the scientific knowledge gained with this research project will improve our understanding in the function of marine ecosystems and their trajectories related to global change.
Resumo:
Foreign trade statistics are the main data source to the study of international trade.However its accuracy has been under suspicion since Morgernstern published hisfamous work in 1963. Federico and Tena (1991) have resumed the question arguing thatthey can be useful in an adequate level of aggregation. But the geographical assignmentproblem remains unsolved. This article focuses on the spatial variable through theanalysis of the reliability of textile international data for 1913. A geographical biasarises between export and import series, but because of its quantitative importance it canbe negligible in an international scale.
Resumo:
In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS) environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM) with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.
Resumo:
In this paper we introduce a highly efficient reversible data hiding system. It is based on dividing the image into tiles and shifting the histograms of each image tile between its minimum and maximum frequency. Data are then inserted at the pixel level with the largest frequency to maximize data hiding capacity. It exploits the special properties of medical images, where the histogram of their nonoverlapping image tiles mostly peak around some gray values and the rest of the spectrum is mainlyempty. The zeros (or minima) and peaks (maxima) of the histograms of the image tiles are then relocated to embed the data. The grey values of some pixels are therefore modified.High capacity, high fidelity, reversibility and multiple data insertions are the key requirements of data hiding in medical images. We show how histograms of image tiles of medical images can be exploited to achieve these requirements. Compared with data hiding method applied to the whole image, our scheme can result in 30%-200% capacity improvement and still with better image quality, depending on the medical image content. Additional advantages of the proposed method include hiding data in the regions of non-interest and better exploitation of spatial masking.
Resumo:
Flood simulation studies use spatial-temporal rainfall data input into distributed hydrological models. A correct description of rainfall in space and in time contributes to improvements on hydrological modelling and design. This work is focused on the analysis of 2-D convective structures (rain cells), whose contribution is especially significant in most flood events. The objective of this paper is to provide statistical descriptors and distribution functions for convective structure characteristics of precipitation systems producing floods in Catalonia (NE Spain). To achieve this purpose heavy rainfall events recorded between 1996 and 2000 have been analysed. By means of weather radar, and applying 2-D radar algorithms a distinction between convective and stratiform precipitation is made. These data are introduced and analyzed with a GIS. In a first step different groups of connected pixels with convective precipitation are identified. Only convective structures with an area greater than 32 km2 are selected. Then, geometric characteristics (area, perimeter, orientation and dimensions of the ellipse), and rainfall statistics (maximum, mean, minimum, range, standard deviation, and sum) of these structures are obtained and stored in a database. Finally, descriptive statistics for selected characteristics are calculated and statistical distributions are fitted to the observed frequency distributions. Statistical analyses reveal that the Generalized Pareto distribution for the area and the Generalized Extreme Value distribution for the perimeter, dimensions, orientation and mean areal precipitation are the statistical distributions that best fit the observed ones of these parameters. The statistical descriptors and the probability distribution functions obtained are of direct use as an input in spatial rainfall generators.
Resumo:
The origin of Spanish regional economic divergence can be traced back at least until the seventeenth century, although its full definition took place during industrialisation. Historians have often included uneven regional infrastructure endowments among the factors that explain divergence among Spanish regions, although no systematic analysis of the spatial distribution of Spanish infrastructure and its determinants has been carried out so far. This paper aims at filling that gap, by offering a description of the regional distribution of the main Spanish transport infrastructure between the middle of the nineteenth century and the Civil War. In addition, it estimates a panel data model to search into the main reasons that explain the differences among the Spanish regional endowments of railways and roads during that period. The outcomes of that analysis indicate that both institutional factors and the physical characteristics of each area had a strong influence on the distribution of transport infrastructure among the Spanish regions.
Resumo:
This paper examines the direct and indirect impacts of transport infrastructure on industrial employment. We estimate regressions with spatial econometric methods using data from the Spanish regions for the period 1995-2008. We find that the density of motorways and the amount of port traffic (particularly general non-containerized and container traffic) are significant determinants of industrial employment in the region, while the effects of railway density and the amount of airport traffic are unclear. Our empirical analysis shows the existence of significant negative spatial spillovers for the density of motorways and levels of container port traffic while the impact of general non-containerized port traffic seems to be mainly local.
Resumo:
This paper aims to provide insights into the phenomenon of knowledge flows. We study one of the main mechanisms through which these flows occur, i.e., the mobility of highly-skilled individuals. We focus on the geographical mobility of inventors across European regions. Thus, patent data are used to trace the pattern of inventors’ mobility across european regions, to track down focuses of attraction of talent throughout the continent, and to study their distribution across the space. To do so, we gather information from PCT patent documents and we first match the names which seemed to belong to the same inventor and then we create a new algorithm to decide whether each patent applied for under each name belongs to the same inventor.
Resumo:
We present a participant study that compares biological data exploration tasks using volume renderings of laser confocal microscopy data across three environments that vary in level of immersion: a desktop, fishtank, and cave system. For the tasks, data, and visualization approach used in our study, we found that subjects qualitatively preferred and quantitatively performed better in the cave compared with the fishtank and desktop. Subjects performed real-world biological data analysis tasks that emphasized understanding spatial relationships including characterizing the general features in a volume, identifying colocated features, and reporting geometric relationships such as whether clusters of cells were coplanar. After analyzing data in each environment, subjects were asked to choose which environment they wanted to analyze additional data sets in - subjects uniformly selected the cave environment.