122 resultados para Sound absorbing materials
Resumo:
Materials science is a multidisciplinary research topic related to the development of physics and technology. Mechanical alloying of ribbon flakes is a two steps route to develop advanced materials. In this work, a Fe based alloy was obtained using three pathways: mechanical alloying, melt-spinning and mechanical alloying of previously melt-spun samples. Processing conditions allow us to obtain amorphous or nanocrystalline structures. Furthermore, a bibliographic revision of mechanical alloying is here presented
Resumo:
L’ús de materials compostos de matriu polimèrica (FRP, Fibre Reinforced Polymer) en el reforç intern d'estructures de formigó
Resumo:
Corrosion reduces the lifetime of municipal solid waste incineration (MSWI) superheater tubes more than any other cause. It can be minimized by the careful selection of those materials that are most resistant to corrosion under operating conditions. Since thousands of different materials are already known and many more are developed every year, here the selection methodology developed by Prof. Ashby of the University of Cambridge was used to evaluate the performance of different materials to be used as MSWI superheater tubes. The proposed materials can operate at steam pressures and temperatures over 40 bars and 400ºC, respectively. Two case studies are presented: one makes a balanced selection between mechanical properties and cost per thermal unit; and the other focuses on increasing tube lifetime. The balanced selection showed that AISI 410 martensitic stainless steel (wrought, hard tempered) is the best candidate with a good combination of corrosion resistance, a relatively low price (0.83-0.92 e/kg) and a good thermal conductivity (23-27 W/m K). Meanwhile, Nitronic 50/XM-19 stainless steel is the most promising candidate for longterm selection, as it presents high corrosion resistance with a relatively low price (4.86-5.14 e/kg) compared to Ni-alloys.
Resumo:
Rapid manufacturing is an advanced manufacturing technology based on layer-by-layer manufacturing to produce a part. This paper presents experimental work carried out to investigate the effects of scan speed, layer thickness, and building direction on the following part features: dimensional error, surface roughness, and mechanical properties for DMLS with DS H20 powder and SLM with CL 20 powder (1.4404/AISI 316L). Findings were evaluated using ANOVA analysis. According to the experimental results, build direction has a significant effect on part quality, in terms of dimensional error and surface roughness. For the SLM process, the build direction has no influence on mechanical properties. Results of this research support industry estimating part quality and mechanical properties before the production of parts with additive manufacturing, using iron-based powders
Resumo:
Amb el present treball es vol aprofundir en la manera que influeix l’organització d’espais, d’ambients i les característiques dels materials en el procés educatiu. A partir d’una recerca teòrica en base les necessitats educatives de la societat actual, les necessitats evolutives dels infants, i en base a l’observació i anàlisi d’escoles reggianes i catalanes referents que tenen en compte com a agent educador l’espai, els ambients i els materials, es volen reunir quines són les característiques bàsiques de l’organització dels espais, ambients i materials per garantir una educació de qualitat a l’etapa infantil (3-6).
Resumo:
Peer-reviewed
Resumo:
Based on experimental observations of modulated magnetic patterns in a Co0.5Ni0.205Ga0.295 alloy, we propose a model to describe a (purely) magnetic tweed and a magnetoelastic tweed. The former arises above the Curie (or Nel) temperature due to magnetic disorder. The latter results from compositional fluctuations coupling to strain and then to magnetism through the magnetoelastic interaction above the structural transition temperature. We discuss the origin of purely magnetic and magnetoelastic precursor modulations and their experimental thermodynamic signatures.
Resumo:
The effect of the local environment on the energetic strain within small (SiO)N rings (with N=2,3) in silica materials is investigated via periodic model systems employing density functional calculations. Through comparison of the energies of various nonterminated systems containing small rings in strained and relatively unstrained environments, with alpha quartz, we demonstrate how small ring strain is affected by the nature of the embedding environment. We compare our findings with numerous previously reported calculations, often predicting significantly different small-ring strain energies, leading to a critical assessment of methods of calculating accurate localized ring energies. The results have relevance for estimates of the strain-induced response (e.g., chemical, photo, and radio) of small silica rings, and the propensity for them to form in bulk glasses, thin films, and nanoclusters.
Resumo:
Hydrological disturbances, light availability and nutrients are the most relevant factors determining the structure of the biological communities in Mediterranean rivers. While some hydrological disturbances are able to induce catastrophic effects, which may cause a complete reset in physical and biological conditions, continued enrichment or changes in light availability are factors leading to the progressive shift in the communities of autotrophs and heterotrophs in the systems. Primary production in Mediterranean streams shows relevant seasonal changes which mainly follows the variations in light availability. In most forested streams, the algal community is shade-adapted. Nutrient enrichment (especially phosphorus) leads to marked increases in primary production, but this increase is not lineal and there is a saturation of algal biomass even in the most enriched systems. The heterotrophs (bacteria, fungi) are related to the pattern of DOC availability (which most depends on the seasonal discharge and leaf fall dynamics) and to the available substrata in the stream. It has been repeatedly observed that shorttime increases of extracellular enzyme activities are related to the accumulation of autochthonous (algal) and/or allochthonous (leaves) organic matter on the streambed during spring and summer, this being more remarkable in dry than in wetter years. Flow reduction favours detritus concentration in pools, and the subsequent increase in the density and biomass of the macroinvertebrate community. In Mediterranean streams collectors are accounting for the highest density and biomass, this being more remarkable in the least permanent systems, in accordance with the effect of floods on the organic matter availability. Nutrients, through the effect on the primary producers, also affect the trophic food web in the streams by favouring the predominance of grazers
Resumo:
Many Ophidiidae are active in dark environments and display complex sonic apparatus morphologies. However, sound recordings are scarce and little is known about acoustic communication in this family. This paper focuses on Ophidion rochei which is known to display an important sexual dimorphism in swimbladder and anterior skeleton. The aims of this study were to compare the sound producing morphology, and the resulting sounds in juveniles, females and males of O. rochei.Results: Males, females, and juveniles possessed different morphotypes. Females and juveniles contrasted with males because they possessed dramatic differences in morphology of their sonic muscles, swimbladder, supraoccipital crest, and first vertebrae and associated ribs. Further, they lacked the ‘rocker bone’ typically found in males. Sounds from each morphotype were highly divergent. Males generally produced non harmonic, multiple-pulsed sounds that lasted for several seconds (3.5 ± 1.3 s) with a pulse period of ca. 100 ms. Juvenile and female sounds were recorded for the first time in ophidiids. Female sounds were harmonic, had shorter pulse period (±3.7 ms), and never exceeded a few dozen milliseconds (18 ± 11 ms). Moreover, unlike male sounds, female sounds did not have alternating long and short pulse periods. Juvenile sounds were weaker but appear to be similar to female sounds.Conclusions: Although it is not possible to distinguish externally male from female in O. rochei, they show a sonic apparatus and sounds that are dramatically different. This difference is likely due to their nocturnal habits that may have favored the evolution of internal secondary sexual characters that help to distinguish males from females and that could facilitate mate choice by females. Moreover, the comparison of different morphotypes in this study shows that these morphological differences result from a peramorphosis that takes place during the development of the gonads
Resumo:
In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone) (PGC25 3-0) and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data
Resumo:
A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics. The constitutive equation that results from the definition of the free energy as a function of a damage variable is used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation proposed accounts for crack closure effets avoiding interfacial penetration of two adjacent layers aftercomplete decohesion. The model is implemented in a finite element formulation. The numerical predictions given by the model are compared with experimental results
Resumo:
The research group Gre‐TICE (Grupo de investigación en tecnologías de la Información y la Comunicación en Educación) has the acquisition of the multimedia language and their use as a form of expression as one of their lines of research. During the academic year 2002‐ 2003, following previous work in the use of ICT in Education, commenced upon the project: “The acquisition of visual and sound codes and the processes related to the visual media”. The intention of this project is to study how formal or non‐formal education context can help young adults and children to acquire visual and sound codes to become ‘critical consumers’ with the media and to use the tools in a creative way. To achieve this objective, the project team has developed a partner group which includes professional from different European regions; including teachers and managers from across the age spectrum, government institutions and cultural organisations. Whilst the project will call upon qualitative analysis of the previous projects / research, it will seek to develop ‘Good Practice’ guides and other resources/ materials to be disseminated to project partners (and others) to build innovative actions throughout the European region
Resumo:
Existeixen diversos estudis que avaluen el consum energètic derivat del procés de producció deISF (Incremental Sheet Forming), principalment per materials metàl•lics. Per tant, l’objectiu d’aquest projecte ésdeterminar el consum energètic en la conformació de materials plàstics en aquest procés.S’estudiarà el consum energètic mesurant l’energia elèctrica necessària per al procés, utilitzantdiferents paràmetres i estratègies de fabricació, com poden ser diferents materialspolimèrics, trajectòries variades de conformat, diferents velocitats d’avanç i rotació i diferentsgeometries.Un cop analitzat el consum energètic derivat de la fabricació amb ISF es valorarà l’impacteambiental que provoca aquesta tecnologia