320 resultados para Palmer Memorial Institute (Sedalia, N.C.)
Resumo:
For a few years now, the study of quantum field theories in partially compactified space-time manifolds has acquired increasing importance in several domains of quantum physics. Let me just mention the issues of dimensional reduction and spontaneous compactification, and the multiple questions associated with the study of quantum field theories in the presence of boundaries (like the Casimir effect) and on curved space-time (manifolds with curvature and nontrivial topology), a step towards quantum gravity.
Resumo:
A very simple model of a classical particle in a heat bath under the influence of external noise is studied. By means of a suitable hypothesis, the heat bath is reduced to an internal colored noise (OrnsteinUhlenbeck noise). In a second step, an external noise is coupled to the bath. The steady state probability distributions are obtained.
Resumo:
New results on the theory of constrained systems are applied to characterize the generators of Noethers symmetry transformations. As a byproduct, an algorithm to construct gauge transformations in Hamiltonian formalism is derived. This is illustrated with two relevant examples.
Resumo:
We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.
Resumo:
The equivalence between the Lagrangian and Hamiltonian formalism is studied for constraint systems. A procedure to construct the Lagrangian constraints from the Hamiltonian constraints is given. Those Hamiltonian constraints that are first class with respect to the Hamiltonian constraints produce Lagrangian constraints that are FL-projectable.
Resumo:
The relationship between the Poincar and Galilei groups allows us to write the Poincar wave equations for arbitrary spin as a Fourier transform of the Galilean ones. The relation between the Lagrangian formulation for both cases is also studied.
Resumo:
We generalize the analogous of Lee Hwa Chungs theorem to the case of presymplectic manifolds. As an application, we study the canonical transformations of a canonical system (M, S, O). The role of Dirac brackets as a test of canonicity is clarified.
Resumo:
We develop a theory of canonical transformations for presymplectic systems, reducing this concept to that of canonical transformations for regular coisotropic canonical systems. In this way we can also link these with the usual canonical transformations for the symplectic reduced phase space. Furthermore, the concept of a generating function arises in a natural way as well as that of gauge group.
Resumo:
We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.
Poincar-Cartan intregral invariant and canonical trasformation for singular Lagrangians: an addendum
Resumo:
The results of a previous work, concerning a method for performing the canonical formalism for constrained systems, are extended when the canonical transformation proposed in that paper is explicitly time dependent.
Resumo:
The BatalinVilkovisky formalism is studied in the framework of perturbation theory by analyzing the antibracket BecchiRouetStoraTyutin (BRST) cohomology of the proper solution S0. It is concluded that the recursive equations for the complete proper solution S can be solved at any order of perturbation theory. If certain conditions on the classical action and on the gauge generators are imposed the solution can be taken local.
Resumo:
Starting from the standard one-time dynamics of n nonrelativistic particles, the n-time equations of motion are inferred, and a variational principle is formulated. A suitable generalization of the classical LieKnig theorem is demonstrated, which allows the determination of all the associated presymplectic structures. The conditions under which the action of an invariance group is canonical are studied, and a corresponding Noether theorem is deduced. A formulation of the theory in terms of n first-class constraints is recovered by means of coisotropic imbeddings. The proposed approach also provides for a better understanding of the relativistic particle dynamics, since it shows that the different roles of the physical positions and the canonical variables is not peculiar to special relativity, but rather to any n-time approach: indeed a nonrelativistic no-interaction theorem is deduced.
Resumo:
In order to study the connections between Lagrangian and Hamiltonian formalisms constructed from aperhaps singularhigher-order Lagrangian, some geometric structures are constructed. Intermediate spaces between those of Lagrangian and Hamiltonian formalisms, partial Ostrogradskiis transformations and unambiguous evolution operators connecting these spaces are intrinsically defined, and some of their properties studied. Equations of motion, constraints, and arbitrary functions of Lagrangian and Hamiltonian formalisms are thoroughly studied. In particular, all the Lagrangian constraints are obtained from the Hamiltonian ones. Once the gauge transformations are taken into account, the true number of degrees of freedom is obtained, both in the Lagrangian and Hamiltonian formalisms, and also in all the intermediate formalisms herein defined.
Resumo:
A Lagrangian treatment of the quantization of first class Hamiltonian systems with constraints and Hamiltonian linear and quadratic in the momenta, respectively, is performed. The first reduce and then quantize and the first quantize and then reduce (Diracs) methods are compared. A source of ambiguities in this latter approach is pointed out and its relevance on issues concerning self-consistency and equivalence with the first reduce method is emphasized. One of the main results is the relation between the propagator obtained la Dirac and the propagator in the full space. As an application of the formalism developed, quantization on coset spaces of compact Lie groups is presented. In this case it is shown that a natural selection of a Dirac quantization allows for full self-consistency and equivalence. Finally, the specific case of the propagator on a two-dimensional sphere S2 viewed as the coset space SU(2)/U(1) is worked out. 1995 American Institute of Physics.
Resumo:
We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian turbulent flows by using a linear Langevin equation, where the noise term acts as a stochastic stirring force. The characteristic parameters of the velocity field are well introduced, in particular the kinematic viscosity and the spectrum of energy. As an application, the diffusion of a passive scalar is studied for two different energy spectra. Numerical results are compared favorably with analytical calculations.