164 resultados para Magnetic anomalies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln (t/t0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe3O4 particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fréedericksz transition under twist deformation in a nematic layer is discussed when the magnetic field has a random component. A dynamical model which includes the thermal fluctuations of the system is presented. The randomness of the field produces a shift of the instability point. Beyond this instability point the time constant characteristic of the approach to the stationary stable state decreases because of the field fluctuations. The opposite happens for fields smaller than the critical one. The decay time of an unstable state, calculated as a mean first-passage time, is also decreased by the field fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical study of the recently observed dynamical regimes of paramagnetic colloidal particles externally driven above a regular lattice of magnetic bubbles [P. Tierno, T. H. Johansen, and T. M. Fischer, Phys. Rev. Lett. 99, 038303 (2007)]. An external precessing magnetic field alters the potential generated by the surface of the film in such a way to either drive the particle circularly around one bubble, ballistically through the array, or in triangular orbits on the interstitial regions between the bubbles. In the ballistic regime, we observe different trajectories performed by the particles phase locked with the external driving. Superdiffusive motion, which was experimentally found bridging the localized and delocalized dynamics, emerge only by introducing a certain degree of randomness into the bubbles size distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of magnetic coupling in KNiF3 and K2 NiF4 is studied by means of an ab initio cluster model approach. By a detailed study of the mapping between eigenstates of the exact nonrelativistic and spin model Hamiltonians it is possible to obtain the magnetic coupling constant J and to compare ab initio cluster-model values with those resulting from ab initio periodic Hartree-Fock calculations. This comparison shows that J is strongly determined by two-body interactions; this is a surprising and unexpected result. The importance of the ligands surrounding the basic metal-ligand-metal interacting unit is reexamined by using two different partitions and the constrained space orbital variation method of analysis. This decomposition enables us to show that this effect is basically environmental. Finally, dynamical electronic correlation effects have found to be critical in determining the final value of the magnetic coupling constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Fréedericksz transition in a twist geometry under the effect of a periodic modulation of the magnitude of the applied magnetic field. We find a shift of the effective instability point and a time-periodic state with anomalously large orientational fluctuations. This time-periodic state occurs below threshold and it is accompanied by a dynamically stabilized spatial pattern. Beyond the instability the emergence of a transient pattern can be significantly delayed by a fast modulation, allowing the observation of pattern selection by slowing down the reorientational dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existence of collective effects in magnetic coupling in ionic solids is studied by mapping spin eigenstates of the Heisenberg and exact nonrelativistic Hamiltonians on cluster models representing KNiF3, K2NiF4, NiO, and La2CuO4. Ab initio techniques are used to estimate the Heisenberg constant J. For clusters with two magnetic centers, the values obtained are about the same for models having more magnetic centers. The absence of collective effects in J strongly suggests that magnetic interactions in this kind of ionic solids are genuinely local and entangle only the two magnetic centers involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CuF2 is known to be an antiferromagnetic compound with a weak ferromagnetism due to the anisotropy of its monoclinic unit cell (Dzialoshinsky-Moriya mechanism). We investigate the magnetic ordering of this compound by means of ab initio periodic unrestricted Hartree-Fock calculations and by cluster calculations which employ state-of-the-art configuration interaction expansions and modern density functional theory techniques. The combined use of periodic and cluster models permits us to firmly establish that the antiferromagnetic order arises from the coupling of one-dimensional subunits which themselves exhibit a very small ferromagnetic coupling between Cu neighbor cations. This magnetic order could be anticipated from the close correspondence between CuF2 and rutile crystal structures.