207 resultados para Industrial location.
Resumo:
In this paper we consider a location and pricing model for a retail firm that wants to enter a spatial market where a competitor firm is already operating as a monopoly with several outlets. The entering firms seeks to determine the optimal uniform mill price and its servers' locations that maximizes profits given the reaction in price of the competitor firm to its entrance. A tabu search procedure is presentedto solve the model together with computational experience.
Resumo:
The P-median problem is a classical location model par excellence . In this paper we, firstexamine the early origins of the problem, formulated independently by Louis Hakimi andCharles ReVelle, two of the fathers of the burgeoning multidisciplinary field of researchknown today as Facility Location Theory and Modelling. We then examine some of thetraditional heuristic and exact methods developed to solve the problem. In the third sectionwe analyze the impact of the model in the field. We end the paper by proposing new lines ofresearch related to such a classical problem.
Resumo:
Low corporate taxes can help attract new firms. This is the main mechanism underpinning the standard 'race-to-the-bottom'view of tax competition. A recent theoretical literature has qualified this view by formalizing the argument that agglomeration forces can reduce firms' sensitivity to tax differentials across locations. We test this proposition using data on firm startups across Swiss municipalities. We find that, on average, high corporate income taxes do deter new firms, but that this relationship is significantly weaker in the most spatially concentrated sectors. Location choices of firms in sectors with an agglomeration intensity at the twentieth percentile of the sample distribution are estimated to be twice as responsive to a given difference in local corporate tax burdens as firms in sectors with an agglomeration intensity at the eightieth percentile. Hence, our analysis confirms the theoretical prediction: agglomeration economies can neutralize the impact of tax differentials on firms' location choices.
Resumo:
Crowding-out during the British Industrial Revolution has long been one of the leadingexplanations for slow growth during the Industrial Revolution, but little empirical evidence exists to support it. We argue that examinations of interest rates are fundamentally misguided, and that the eighteenth- and early nineteenth-century private loan market balanced through quantity rationing. Using a unique set of observations on lending volume at a London goldsmith bank, Hoare s, we document the impact of wartime financing on private credit markets. We conclude that there is considerable evidence that government borrowing, especially during wartime, crowded out private credit.
Resumo:
The optimal location of services is one of the most important factors that affects service quality in terms of consumer access. On theother hand, services in general need to have a minimum catchment area so as to be efficient. In this paper a model is presented that locates the maximum number of services that can coexist in a given region without having losses, taking into account that they need a minimum catchment area to exist. The objective is to minimize average distance to the population. The formulation presented belongs to the class of discrete P--median--like models. A tabu heuristic method is presented to solve the problem. Finally, the model is applied to the location of pharmacies in a rural region of Spain.
Resumo:
This paper presents new estimates of total factor productivity growth in Britain for the period1770 1860. We use the dual technique and argue that the estimates we derive from factorprices are of similar quality to quantity-based calculations. Our results provide further evidence,calculated on the basis of an independent set of sources, that productivity growth duringthe British Industrial Revolution was relatively slow. The Crafts Harley view of theIndustrial Revolution is thus reinforced. Our preferred estimates suggest a modest accelerationafter 1800.
Resumo:
The Maximum Capture problem (MAXCAP) is a decision model that addresses the issue of location in a competitive environment. This paper presents a new approach to determine which store s attributes (other than distance) should be included in the newMarket Capture Models and how they ought to be reflected using the Multiplicative Competitive Interaction model. The methodology involves the design and development of a survey; and the application of factor analysis and ordinary least squares. Themethodology has been applied to the supermarket sector in two different scenarios: Milton Keynes (Great Britain) and Barcelona (Spain).
Resumo:
We offer a formulation that locates hubs on a network in a competitiveenvironment; that is, customer capture is sought, which happenswhenever the location of a new hub results in a reduction of thecurrent cost (time, distance) needed by the traffic that goes from thespecified origin to the specified destination.The formulation presented here reduces the number of variables andconstraints as compared to existing covering models. This model issuited for both air passenger and cargo transportation.In this model, each origin-destination flow can go through either oneor two hubs, and each demand point can be assigned to more than a hub,depending on the different destinations of its traffic. Links(``spokes'' have no capacity limit. Computational experience is provided.
Resumo:
Previous covering models for emergency service consider all the calls to be of the sameimportance and impose the same waiting time constraints independently of the service's priority.This type of constraint is clearly inappropriate in many contexts. For example, in urban medicalemergency services, calls that involve danger to human life deserve higher priority over calls formore routine incidents. A realistic model in such a context should allow prioritizing the calls forservice.In this paper a covering model which considers different priority levels is formulated andsolved. The model heritages its formulation from previous research on Maximum CoverageModels and incorporates results from Queuing Theory, in particular Priority Queuing. Theadditional complexity incorporated in the model justifies the use of a heuristic procedure.
Resumo:
Why was England first? And why Europe? We present a probabilistic model that builds on big-push models by Murphy, Shleifer and Vishny (1989), combined with hierarchical preferences. The interaction of exogenous demographic factors (in particular the English low-pressure variant of the European marriage pattern)and redistributive institutions such as the old Poor Law combined to make an Industrial Revolution more likely. Essentially, industrialization is the result of having a critical mass of consumers that is rich enough to afford (potentially) mass-produced goods. Our model is then calibrated to match the main characteristics of the English economy in 1750 and the observed transition until 1850.This allows us to address explicitly one of the key features of the British IndustrialRevolution unearthed by economic historians over the last three decades the slowness of productivity and output change. In our calibration, we find that the probability of Britain industrializing is 5 times larger than France s. Contrary to the recent argument by Pomeranz, China in the 18th century had essentially no chance to industrialize at all. This difference is decomposed into a demographic and a policy component, with the former being far more important than the latter.
Resumo:
When dealing with the design of service networks, such as healthand EMS services, banking or distributed ticket selling services, thelocation of service centers has a strong influence on the congestion ateach of them, and consequently, on the quality of service. In this paper,several models are presented to consider service congestion. The firstmodel addresses the issue of the location of the least number of single--servercenters such that all the population is served within a standard distance,and nobody stands in line for a time longer than a given time--limit, or withmore than a predetermined number of other clients. We then formulateseveral maximal coverage models, with one or more servers per service center.A new heuristic is developed to solve the models and tested in a 30--nodesnetwork.
Resumo:
In this paper we develop two models for an inventory system in which the distributormanages the inventory at the retailers location. These type of systems correspondto the Vendor Managed Inventory (VMI) systems described ib the literature. Thesesystems are very common in many different types of industries, such as retailingand manufacturing, although assuming different characteristics.The objective of our model is to minimize total inventory cost for the distributorin a multi-period multi-retailer setting. The inventory system includes holdingand stock-out costs and we study the case whre an additional fixed setup cost ischarged per delivery.We construct a numerical experiment to analyze the model bahavior and observe theimpact of the characteristics of the model on the solutions.