142 resultados para Field currents
Resumo:
Most structure-building organisms in rocky benthic communities are surface-dependent because their energy inputs depend mainly on the surface they expose to water. Two photosynthetic strategies, divided into calcareous and non calcareous algae, strict suspension-feeders and photosynthetic suspension feeders (e.g. hermatypic corals) are the four main strategies evolutively acquired by benthic organisms. Competition between those strategies occur in relation to productivity of the different species, in such a way that, for given environmental conditions, species with a higher growth (P/B ratio) would dominate. At a worldwide scale, littoral marine benthos can he considered to fit into the four fields defined by two main axes: the first, relates to productivity and relies atrophic and oligotrophic waters and the second is defined by the degree of environmental variability or seasonality (from high to low). Coral reefs (marine ecosystems dominated by photosynthetic suspension feeders) develop in the space of oligotrophic areas with low variability, while kelp beds (marine ecosystem dominated by large, non calcareous algae) are to be found only in eutrophic places with a high variability. The space of eutrophic waters with a low variability do not has specially adapted, high structured, benthic marine ecosystems, and in these conditions opportunistic algae and animals predominate. Finally, photophilic mediterranean benthos -devoid of kelps and without hermatypic corals- typifies the field of oligotrophic areas with high variability; in its more genuine aspect, Mediterranean benthos is represented by small algae with a high percentage of calcareous thallii. In all cases strict suspension-feeders compete successfully with photosynthetic organisms only in situations of low irradiances or very high inputs of POM. In its turn, Mediterranean rocky benthos, in spite of its relative uniformity, is geographically organized along the same axes. The Gulf of Lions and the insular bottoms (Balearic Islands, for example) would correspond to the extremes of eutrophic-high variability areas and oligotrophic-low variability areas, respectively. Irradiance, nutrient and POM concentration, and hydrodynamism are the three variables which mainly affect the distribution of the different surface-dependent strategies, and thus, these parameters are of paramount interest for understanding the trophic structure of Mediterranean benthic communities. In environments non limited by light, nutrient availability, defined as the product between nutrient -POM concentration and hydrodynamism, states the dominance of calcareous versus non calcareous algae. Calcareous algae dominate in oligotrophic waters while non-calcareous algae dominate in moderately eutrophic waters. In light-limited environments, passive suspension feeders (octocorallaria, gorgonians) become dominant species if POM availability is enhanced by a high hydrodynamism (strong currents); in waters with a low charge of POM organisms of other groups, mainly active suspension feeders, predominate (sponges, bryozoans, scleractiniarians). In any case, there always exists a very variable bathymetric zone, depending on light attenuation and nutrient-POM availability, where encrusting calcareous algae strongly compete with suspension feeders (coralligenous).
Resumo:
The RuskSkinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. 2004 American Institute of Physics.
Resumo:
Thermal and field-induced martensite-austenite transition was studied in melt spun Ni50.3Mn35.3Sn14.4 ribbons. Its distinct highly ordered columnarlike microstructure normal to ribbon plane allows the direct observation of critical fields at which field-induced and highly hysteretic reverse transformation starts (H=17kOe at 240K), and easy magnetization direction for austenite and martensite phases with respect to the rolling direction. Single phase L21 bcc austenite with TC of 313K transforms into a 7M orthorhombic martensite with thermal hysteresis of 21K and transformation temperatures of MS=226K, Mf=218K, AS=237K, and Af=244K
Resumo:
This handbook describes the peer review methodology that was applied at the GODIAC project fi eld studies1. The peer review evaluation method as initiated by Otto Adang in the Netherlands and further developed in a European football context (Adang & Brown, 2008) involves experienced police offi cers cooperating with researchers to perform observational fi eld studies to identify good practices and learning points for public order management. The handbook builds on the GODIAC seminars and workshops, for the fi eld study members, which took place in September 2010, January 2012 and January 2013. The handbook has been discussed in the project group and in the steering committee. It is primarily written for the GODIAC fi eld study members as background material for understanding the fi eld study process and for clarifying the different responsibilities that enable active participation in the fi eld study. The handbook has been developed during the project period and incorporates learning points and developments of the peer review method. The handbook aims at promoting the use of fi eld studies for evaluation of policing major events.
Resumo:
The development of shear instabilities of a wave-driven alongshore current is investigated. In particular, we use weakly nonlinear theory to investigate the possibility that such instabilities, which have been observed at various sites on the U.S. coast and in the laboratory, can grow in linearly stable flows as a subcritical bifurcation by resonant triad interaction, as first suggested by Shrira eta/. [1997]. We examine a realistic longshore current profile and include the effects of eddy viscosity and bottom friction. We show that according to the weakly nonlinear theory, resonance is possible and that these linearly stable flows may exhibit explosive instabilities. We show that this phenomenon may occur also when there is only approximate resonance, which is more likely in nature. Furthermore, the size of the perturbation that is required to trigger the instability is shown in some circumstances to be consistent with the size of naturally occurring perturbations. Finally, we consider the differences between the present case examined and the more idealized case of Shrira et a/. [ 1997]. It is shown that there is a possibility of coupling between triads, due to the richer modal structure in more realistic flows, which may act to stabilize the flow and act against the development of subcritical bifurcations. Extensive numerical tests are called for.
Resumo:
The relation between the low-energy constants appearing in the effective field theory description of the Lambda N -> NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.
Resumo:
The relation between the low-energy constants appearing in the effective field theory description of the Lambda N -> NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.
Resumo:
We report a phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses. Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors in suspensions of bound dimers constituted by induced dipoles. The great variety of stress regimes includes nonmonotonic behaviors, multiresonances, negative viscosity effect, and blockades. The reversibility of the transitions between the different regimes and the self-similarity of the stresses make this phenomenon controllable and therefore applicable to modify macroscopic properties of soft condensed matter phases.
Resumo:
Using the blackfold approach, we study new classes of higher-dimensional rotating black holes with electric charges and string dipoles, in theories of gravity coupled to a 2-form or 3-form field strength and to a dilaton with arbitrary coupling. The method allows to describe not only black holes with large angular momenta, but also other regimes that include charged black holes near extremality with slow rotation. We construct explicit examples of electric rotating black holes of dilatonic and non-dilatonic Einstein-Maxwell theory, with horizons of spherical and non-spherical topology. We also find new families of solutions with string dipoles, including a new class of prolate black rings. Whenever there are exact solutions that we can compare to, their properties in the appropriate regime are reproduced precisely by our solutions. The analysis of blackfolds with string charges requires the formulation of the dynamics of anisotropic fluids with conserved string-number currents, which is new, and is carried out in detail for perfect fluids. Finally, our results indicate new instabilities of near-extremal, slowly rotating charged black holes, and motivate conjectures about topological constraints on dipole hair.
Resumo:
Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (~10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
This paper presents the first results of a current research project about human – environmental interactions in the Montseny Massif. Our work sets out to integrate two research lines in the studied area: - Archaeological and archaeo-morphological surveys in a lower part of the mountains in order to characterize the evolution of the settlements and field systems. - The geological and geomorphological characterization of the slope and terrace deposits in relation with field systems and archaeological data. First results point out the intensive occupation of these inland areas during the Iberian and the Roman periods. Post-Roman sediments show different processes of erosion.
Resumo:
Field poppy, Papaver rhoeas L., is a very common weed in winter cereals in North-Eastern Spain. Its control is becoming difficult due to expanding herbicide resistance. To control field poppies there are alternative strategies such as non-chemical control that take into account the weed emergence period. However, there is a lack of knowledge of P. rhoeas emergence patterns in semi-arid conditions. Thus, here we conducted pot experiments on the emergence of P. rhoeas. We aimed to describe the emergence period and to quantify the emergence of a susceptible and of a herbicide-resistant P. rhoeas population at two locations in Catalonia, Spain, from 1998 to 2001 and until 2004 at one of them. Therefore, pots containing seeds of both populations were established at the two locations and emergence was recorded monthly. We studied the origin of the population, the sowing location, the effect of cultivation and the sowing year. First, we found that the main emergence peaks in our experiments occurred in autumn, accounting for between 65.7 and 98.5% of the annual emergence from October to December, and only little emergence was recorded in spring. This emergence pattern is different from those found in the literature corresponding to Northern European countries, where in some cases main flushes occur only in autumn, in spring and winter or only in spring. The emergence was mainly affected by cultivation, but the effect of light stimulus was observed several months later. As a consequence, cultivation should be done in early autumn, promoting emergence during the whole autumn and winter so that emerged seedlings can be controlled before sowing a spring crop. Second, most experiments showed that the emergence was significantly higher in the first autumn than in the following seasons, e.g. 4.1% emergence in the first year and only 2.1, 2.3, 0.5 and 0.6% new emergence at one of the locations for the second, third, fourth and fifth years. Thus, after having a severe P. rhoeas infestation causing a big seed rain, emergence should be stimulated by autumn cultivation in the following season and seedlings controlled by trying to deplete the soil seed bank as much as possible. Despite the fact that emergence will be staggered throughout several years and that there was a significant relationship between rainfall and emergence, so that dry years will cause a smaller emergence rate of the weed, these findings define a cultural management strategy to reduce P. rhoeas infestations and to contribute to integrated weed management strategies combining it with other tools.
Resumo:
In previous studies, we demonstrated cross-antagonism in pheromone perception between pheromone componentsof the two corn (Zea mays L.) borers Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) in the laboratory and in the field. The two pheromone components identified as responsible for this cross-antagonism were Z 11-16:Ald, a minor component of S. nonagrioides pheromone, and Z 11-14:Ac, the main component of the pheromone of the Z-strain of O. nubilalis, which inhibited the response of O. nubilalis and S. nonagrioides, respectively. Here, we study this antagonism phenomenon in the field by air permeation of maize plots with each of the two components separately and measurement of mating in caged couples of the two corn borers on treated and untreated plots during three years. A significant reduction in mating rates was observed on the permeated plots: 7% for S. nonagrioides and 12% for O. nubilalis. When dispenser charges (200 ng) were increased by 50% and 75% in the third year, no decrease in mating rates was recorded at either of the increased concentrations. On the other hand, the use of large cages resulted in an increase of 8% to 12% in the percentage of unmated females in each of the two corn borers suggesting that at more realistic field corn borer densities, 0,1 couples/plant instead of the 2 couples/plant used in this experiment, cross-antagonism in the two corn borers could be higher than that recorded in small cages.
Resumo:
Abstract. The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity), currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW-SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION") located at 42 02.50 N, 4 410 E, at 2350-m depth, show that open-ocean convection reached midwater depth ( 1000-m depth) during winter 2007-2008, and reached the seabed ( 2350-m depth) during winter 2008-2009. Horizontal currents were unusually strong with speeds up to 39 cm s−1 during winter 2008-2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008-2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5 %, were abnormally low ( 1 %) during winter 2008-2009 and approached those observed in surface sediments (0.6 %). Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization of sediments in the deep outer margin and the basin, with a subsequent alteration of the seabed likely impacting the functioning of the deep-sea ecosystem.