178 resultados para Deuteric fluids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (nonzero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences for the long-time asymptotics, revealing a fundamental role of surface tension in the dynamics of the problem. A multifinger extension of microscopic solvability theory is proposed to elucidate the interplay between finger widths, screening and surface tension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An approximate theoretical scheme is introduced to compute the velocity of the front and its diffusive wandering due to the presence of noise. The theoretical approach is based on a multiple scale analysis rather than on a small noise expansion and is confirmed with numerical simulations for a wide range of the noise intensity. We report on the possibility of noise sustained solutions with a continuum of possible velocities, in situations where only a single velocity is allowed without noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We make an experimental characterization of the effect that static disorder has on the shape of a normal Saffman-Taylor finger. We find that static noise induces a small amplitude and long wavelength instability on the sides of the finger. Fluctuations on the finger sides have a dominant wavelength, indicating that the system acts as a selective amplifier of static noise. The dominant wavelength does not seem to be very sensitive to the intensity of static noise present in the system. On the other hand, at a given flow rate, rms fluctuations of the finger width, decrease with decreasing intensity of static noise. This might explain why the sides of the fingers are flat for typical Saffman-Taylor experiments. Comparison with previous numerical studies of the effect that temporal noise has on the Saffman-Taylor finger, leads to conclude that the effect of temporal noise and static noise are similar. The behavior of fluctuations of the finger width found in our experiments, is qualitatively similar to one recently reported, in the sense that, the magnitude of the width fluctuations decays as a power law of the capillary number, at low flow rates, and increases with capillary number for larger flow rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effect of multiplicative noise in the time-dependent Ginzburg-Landau model is reported, namely, that noise at a relatively low intensity induces a phase transition towards an ordered state, whereas strong noise plays a destructive role, driving the system back to its disordered state through a reentrant phase transition. The phase diagram is calculated analytically using a mean-field theory and a more sophisticated approach and is compared with the results from extensive numerical simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review recent results on dynamical aspects of viscous fingering. The Saffman¿Taylor instability is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical solvability scenario associated to surface tension in analogy with the traditional selection theory is put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers. The inherently dynamical singular effects of surface tension are clarified. The dynamical role of viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman¿Taylor finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions. We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows, topological singularities and wetting effects, and also discuss future directions in the context of viscous fingering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian turbulent flows by using a linear Langevin equation, where the noise term acts as a stochastic stirring force. The characteristic parameters of the velocity field are well introduced, in particular the kinematic viscosity and the spectrum of energy. As an application, the diffusion of a passive scalar is studied for two different energy spectra. Numerical results are compared favorably with analytical calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of a stable front propagating in a turbulent medium is presented. The front is generated through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a Langevin equation. Numerical simulations indicate the presence of two different dynamical regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring intensities appropriate to each case are found and fitted when possible according to theoretically predicted laws. Different turbulent spectra are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of flow induced by a random acceleration field (g-jitter) are considered in two related situations that are of interest for microgravity fluid experiments: the random motion of isolated buoyant particles, and diffusion driven coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. The diffusive motion of a single solid particle suspended in an incompressible fluid that is subjected to such random accelerations is considered, and mean squared velocities and effective diffusion coefficients are explicitly given. We next study the flow induced by an ensemble of such particles, and show the existence of a hydrodynamically induced attraction between pairs of particles at distances large compared with their radii, and repulsion at short distances. Finally, a mean field analysis is used to estimate the effect of g-jitter on diffusion controlled coarsening of a solid-liquid mixture. Corrections to classical coarsening rates due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, an experiment to be conducted in microgravity in the near future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radial displacement of a fluid annulus in a rotating circular Hele-Shaw cell has been investigated experimentally. It has been found that the flow depends sensitively on the wetting conditions at the outer interface. Displacements in a prewet cell are well described by Darcy's law in a wide range of experimental parameters, with little influence of capillary effects. In a dry cell, however, a more careful analysis of the interface motion is required; the interplay between a gradual loss of fluid at the inner interface, and the dependence of capillary forces at the outer interface on interfacial velocity and dynamic contact angle, result in a constant velocity for the interfaces. The experimental results in this case correlate in the form of an empirical scaling relation between the capillary number Ca and a dimensionless group, related to the ratio of centrifugal to capillary forces, which spans about three orders of magnitude in both quantities. Finally, the relative thickness of the coating film left by the inner interface, alpha i, is obtained as a function of Ca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the fingering instability of a circular interface between two immiscible liquids in a radial Hele-Shaw cell. The cell rotates around its vertical symmetry axis, and the instability is driven by the density difference between the two fluids. This kind of driving allows studying the interfacial dynamics in the particularly interesting case of an interface separating two liquids of comparable viscosity. An accurate experimental study of the number of fingers emerging from the instability reveals a slight but systematic dependence of the linear dispersion relation on the gap spacing. We show that this result is related to a modification of the interface boundary condition which incorporates stresses originated from normal velocity gradients. The early nonlinear regime shows nearly no competition between the outgrowing fingers, characteristic of low viscosity contrast flows. We perform experiments in a wide range of experimental parameters, under conditions of mass conservation (no injection), and characterize the resulting patterns by data collapses of two characteristic lengths: the radius of gyration of the pattern and the interface stretching. Deep in the nonlinear regime, the fingers which grow radially outwards stretch and become gradually thinner, to a point that the fingers pinch and emit drops. We show that the amount of liquid emitted in the first generation of drops is a constant independent of the experimental parameters. Further on there is a sharp reduction of the amount of liquid centrifugated, punctuated by periods of no observable centrifugation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Convective flows of a small Prandtl number fluid contained in a two-dimensional cavity subject to a lateral thermal gradient are numerically studied by using different techniques. The aspect ratio (length to height) is kept at around 2. This value is found optimal to make the flow most unstable while keeping the basic single-roll structure. Two cases of thermal boundary conditions on the horizontal plates are considered: perfectly conducting and adiabatic. For increasing Rayleigh numbers we find a transition from steady flow to periodic oscillations through a supercritical Hopf bifurcation that maintains the centrosymmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation the system initiates a complex scenario of bifurcations. In the conductive case these include a quasiperiodic route to chaos. In the adiabatic one the dynamics is dominated by the interaction of two Neimark-Sacker bifurcations of the basic periodic solutions, leading to the stable coexistence of three incommensurate frequencies, and finally to chaos. In all cases, the complex time-dependent behavior does not break the basic, single-roll structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the interfacial instabilities experienced by a liquid annulus as it moves radially in a circular Hele-Shaw cell rotating with angular velocity Omega. The instability of the leading interface (oil displacing air) is driven by the density difference in the presence of centrifugal forcing, while the instability of the trailing interface (air displacing oil) is driven by the large viscosity contrast. A linear stability analysis shows that the stability of the two interfaces is coupled through the pressure field already at a linear level. We have performed experiments in a dry cell and in a cell coated with a thin fluid layer on each plate, and found that the stability depends substantially on the wetting conditions at the leading interface. Our experimental results of the number of fingers resulting from the instability compare well with the predictions obtained through a numerical integration of the coupled equations derived from a linear stability analysis. Deep in the nonlinear regime we observe the emission of liquid droplets through the formation of thin filaments at the tip of outgrowing fingers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.