139 resultados para rate equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Swift-Hohenberg equation is studied in the presence of a multiplicative noise. This stochastic equation could describe a situation in which a noise has been superimposed on the temperature gradient between the two plates of a Rayleigh-Bnard cell. A linear stability analysis and numerical simulations show that, in constrast to the additive-noise case, convective structures appear in a regime in which a deterministic analysis predicts a homogeneous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deal with the hysteretic behavior of partial cycles in the two¿phase region associated with the martensitic transformation of shape¿memory alloys. We consider the problem from a thermodynamic point of view and adopt a local equilibrium formalism, based on the idea of thermoelastic balance, from which a formal writing follows a state equation for the material in terms of its temperature T, external applied stress ¿, and transformed volume fraction x. To describe the striking memory properties exhibited by partial transformation cycles, state variables (x,¿,T) corresponding to the current state of the system have to be supplemented with variables (x,¿,T) corresponding to points where the transformation control parameter (¿¿ and/or T) had reached a maximum or a minimum in the previous thermodynamic history of the system. We restrict our study to simple partial cycles resulting from a single maximum or minimum of the control parameter. Several common features displayed by such partial cycles and repeatedly observed in experiments lead to a set of analytic restrictions, listed explicitly in the paper, to be verified by the dissipative term of the state equation, responsible for hysteresis. Finally, using calorimetric data of thermally induced partial cycles through the martensitic transformation in a Cu¿Zn¿Al alloy, we have fitted a given functional form of the dissipative term consistent with the analytic restrictions mentioned above.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study about the influence of substrate temperature on deposition rate of hydrogenated amorphous silicon thin films prepared by rf glow discharge decomposition of pure silane gas in a capacitively coupled plasma reactor. Two different behaviors are observed depending on deposition pressure conditions. At high pressure (30 Pa) the influence of substrate temperature on deposition rate is mainly through a modification of gas density, in such a way that the substrate temperature of deposition rate is similar to pressure dependence at constant temperature. On the contrary, at low pressure (3 Pa), a gas density effect cannot account for the observed increase of deposition rate as substrate temperature rises above 450 K with an activation energy of 1.1 kcal/mole. In accordance with laser‐induced fluorescence measurements reported in the literature, this rise has been ascribed to an increase of secondary electron emission from the growing film surface as a result of molecular hydrogen desorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of radio frequency (rf) power and pressure on deposition rate and structural properties of hydrogenated amorphous silicon (a-Si:H) thin films, prepared by rf glow discharge decomposition of silane, have been studied by phase modulated ellipsometry and Fourier transform infrared spectroscopy. It has been found two pressure regions separated by a threshold value around 20 Pa where the deposition rate increases suddenly. This behavior is more marked as rf power rises and reflects the transition between two rf discharges regimes. The best quality films have been obtained at low pressure and at low rf power but with deposition rates below 0.2 nm/s. In the high pressure region, the enhancement of deposition rate as rf power increases first gives rise to a reduction of film density and an increase of content of hydrogen bonded in polyhydride form because of plasma polymerization reactions. Further rise of rf power leads to a decrease of polyhydride bonding and the material density remains unchanged, thus allowing the growth of a-Si:H films at deposition rates above 1 nm/s without any important detriment of material quality. This overcoming of deposition rate limitation has been ascribed to the beneficial effects of ion bombardment on the a-Si:H growing surface by enhancing the surface mobility of adsorbed reactive species and by eliminating hydrogen bonded in polyhydride configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An inflating brane world can be created from ``nothing'' together with its anti-de Sitter (AdS) bulk. The resulting space-time has compact spatial sections bounded by the brane. During inflation, the continuum of KK modes is separated from the massless zero mode by the gap m=(3/2)H, where H is the Hubble rate. We consider the analogue of the Nariai solution and argue that it describes the pair production of ``black cigars'' attached to the inflating brane. In the case when the size of the instantons is much larger than the AdS radius, the 5-dimensional action agrees with the 4-dimensional one. Hence, the 5D and 4D gravitational entropies are the same in this limit. We also consider thermal instantons with an AdS black hole in the bulk. These may be interpreted as describing the creation of a hot universe from nothing or the production of AdS black holes in the vicinity of a pre-existing inflating brane world. The Lorentzian evolution of the brane world after creation is briefly discussed. An additional ``integration constant'' in the Friedmann equation-accompanying a term which dilutes like radiation-describes the tidal force in the fifth direction and arises from the mass of a spherical object inside the bulk. In general, this could be a 5-dimensional black hole or a ``parallel'' brane world of negative tension concentrical with our brane-world. In the case of thermal solutions, and in the spirit of the AdS/CFT correspondence, one may attribute the additional term to thermal radiation in the boundary theory. Then, for temperatures well below the AdS scale, the entropy of this radiation agrees with the entropy of the black hole in the AdS bulk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show the appearance of spatiotemporal stochastic resonance in the Swift-Hohenberg equation. This phenomenon emerges when a control parameter varies periodically in time around the bifurcation point. By using general scaling arguments and by taking into account the common features occurring in a bifurcation, we outline possible manifestations of the phenomenon in other pattern-forming systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several problems in the theory of photon migration in a turbid medium suggest the utility of calculating solutions of the telegrapher¿s equation in the presence of traps. This paper contains two such solutions for the one-dimensional problem, the first being for a semi-infinite line terminated by a trap, and the second being for a finite line terminated by two traps. Because solutions to the telegrapher¿s equation represent an interpolation between wavelike and diffusive phenomena, they will exhibit discontinuities even in the presence of traps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the radiative transfer equation, we obtain an analytical solution for both the free propagator along one of the axes and an arbitrary phase function in the Fourier-Laplace domain. We also find the effective absorption parameter, which turns out to be very different from the one provided by the diffusion approximation. We finally present an analytical approximation procedure and obtain a differential equation that accurately reproduces the transport process. We test our approximations by means of simulations that use the Henyey-Greenstein phase function with very satisfactory results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the reflecting boundary condition for a one-dimensional telegraphers equation is the same as that for the diffusion equation, in contrast to what is found for the absorbing boundary condition. The radiation boundary condition is found to have a quite complicated form. We also obtain exact solutions of the telegraphers equation in the presence of these boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All derivations of the one-dimensional telegraphers equation, based on the persistent random walk model, assume a constant speed of signal propagation. We generalize here the model to allow for a variable propagation speed and study several limiting cases in detail. We also show the connections of this model with anomalous diffusion behavior and with inertial dichotomous processes.