113 resultados para rank order spectra
Resumo:
We study free second-order processes driven by dichotomous noise. We obtain an exact differential equation for the marginal density p(x,t) of the position. It is also found that both the velocity ¿(t) and the position X(t) are Gaussian random variables for large t.
Resumo:
A dynamical model based on a continuous addition of colored shot noises is presented. The resulting process is colored and non-Gaussian. A general expression for the characteristic function of the process is obtained, which, after a scaling assumption, takes on a form that is the basis of the results derived in the rest of the paper. One of these is an expansion for the cumulants, which are all finite, subject to mild conditions on the functions defining the process. This is in contrast with the Lévy distribution¿which can be obtained from our model in certain limits¿which has no finite moments. The evaluation of the spectral density and the form of the probability density function in the tails of the distribution shows that the model exhibits a power-law spectrum and long tails in a natural way. A careful analysis of the characteristic function shows that it may be separated into a part representing a Lévy process together with another part representing the deviation of our model from the Lévy process. This
Resumo:
By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state
Resumo:
A generalization of the predictive relativistic mechanics is studied where the initial conditions are taken on a general hypersurface of M4. The induced realizations of the Poincar group are obtained. The same procedure is used for the Galileo group. Noninteraction theorems are derived for both groups.
Resumo:
Amorphous thin films of Fe/Sm, prepared by evaporation methods, have been magnetically characterized and the results were interpreted in terms of the random magnets theory. The samples behave as 2D and 3D random magnets depending on the total thickness of the film. From our data the existence of orientational order, which greatly influences the magnetic behavior of the films, is also clear.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.
Resumo:
A general dynamical model for the first-order optical Fréedericksz transition incorporating spatial transverse inhomogeneities and hydrodynamic effects is discussed in the framework of a time-dependent Ginzburg-Landau model. The motion of an interface between two coexisting states with different director orientations is considered. A uniformly translating front solution of the dynamical equations for the motion of that interface is described.
Resumo:
The optical-absorption spectrum of a cationic Ag0 atom in a KCl crystal has been studied theoretically by means of a series of cluster models of increasing size. Excitation energies have been determined by means of a multiconfigurational self-consistent field procedure followed by a second-order perturbation correlation treatment. Moreover results obtained within the density-functional framework are also reported. The calculations confirm the assignment of bands I and IV to transitions of the Ag-5s electron into delocalized states with mainly K-4s,4p character. Bands II and III have been assigned to internal transitions on the Ag atom, which correspond to the atomic Ag-4d to Ag-5s transition. We also determine the lowest charge transfer (CT) excitation energy and confirm the assignment of band VI to such a transition. The study of the variation of the CT excitation energy with the Ag-Cl distance R gives additional support to a large displacement of the Cl ions due to the presence of the Ag0 impurity. Moreover, from the present results, it is predicted that on passing to NaCl:Ag0 the CT onset would be out of the optical range while the 5s-5p transition would undergo a redshift of 0.3 eV. These conclusions, which underline the different character of involved orbitals, are consistent with experimental findings. The existence of a CT transition in the optical range for an atom inside an ionic host is explained by a simple model, which also accounts for the differences with the more common 3d systems. The present study sheds also some light on the R dependence of the s2-sp transitions due to s2 ions like Tl+.
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
The character of the electronic ground state of La0.5Ca0.5MnO3 has been addressed with quantum chemical calculations on large embedded clusters. We find a charge ordered state for the crystal structure reported by Radaelli et al. [Phys. Rev. B 55, 3015 (1997)] and Zener polaron formation in the crystal structure with equivalent Mn sites proposed by Daoud-Aladine et al. [Phys. Rev. Lett. 89, 097205 (2002)]. Important O to Mn charge transfer effects are observed for the Zener polaron.
Resumo:
Experimental observations of self-organized behavior arising out of noise are also described, and details on the numerical algorithms needed in the computer simulation of these problems are given.