184 resultados para hierarchical models
Resumo:
This paper points out an empirical puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, both sticky wages and match-specific productivity shocks help the model reproduce the stylized facts: both make the firm's flow of surplus more procyclical, thus making hiring more procyclical too.
Resumo:
This article reviews the methodology of the studies on drug utilization with particular emphasis on primary care. Population based studies of drug inappropriateness can be done with microdata from Health Electronic Records and e-prescriptions. Multilevel models estimate the influence of factors affecting the appropriateness of drug prescription at different hierarchical levels: patient, doctor, health care organization and regulatory environment. Work by the GIUMAP suggest that patient characteristics are the most important factor in the appropriateness of prescriptions with significant effects at the general practicioner level.
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum Capture Problem. In the original MCP, market capture is obtained by lower traveling distances or lower traveling time, in this new version not only the traveling time but also the waiting time will affect the market share. This problem is hard to solve using standard optimization techniques. Metaheuristics are shown to offer accurate results within acceptable computing times.
Resumo:
Although research has documented the importance of emotion in risk perception, little is knownabout its prevalence in everyday life. Using the Experience Sampling Method, 94 part-timestudents were prompted at random via cellular telephones to report on mood state and threeemotions and to assess risk on thirty occasions during their working hours. The emotions valence, arousal, and dominance were measured using self-assessment manikins (Bradley &Lang, 1994). Hierarchical linear models (HLM) revealed that mood state and emotions explainedsignificant variance in risk perception. In addition, valence and arousal accounted for varianceover and above reason (measured by severity and possibility of risks). Six risks were reassessedin a post-experimental session and found to be lower than their real-time counterparts.The study demonstrates the feasibility and value of collecting representative samples of data withsimple technology. Evidence for the statistical consistency of the HLM estimates is provided inan Appendix.
Resumo:
This paper investigates the role of learning by private agents and the central bank(two-sided learning) in a New Keynesian framework in which both sides of the economyhave asymmetric and imperfect knowledge about the true data generating process. Weassume that all agents employ the data that they observe (which may be distinct fordifferent sets of agents) to form beliefs about unknown aspects of the true model ofthe economy, use their beliefs to decide on actions, and revise these beliefs througha statistical learning algorithm as new information becomes available. We study theshort-run dynamics of our model and derive its policy recommendations, particularlywith respect to central bank communications. We demonstrate that two-sided learningcan generate substantial increases in volatility and persistence, and alter the behaviorof the variables in the model in a significant way. Our simulations do not convergeto a symmetric rational expectations equilibrium and we highlight one source thatinvalidates the convergence results of Marcet and Sargent (1989). Finally, we identifya novel aspect of central bank communication in models of learning: communicationcan be harmful if the central bank's model is substantially mis-specified.
Resumo:
Firms select not only how many, but also which workers to hire. Yet, in standardsearch models of the labor market, all workers have the same probability of being hired.We argue that selective hiring crucially affects welfare analysis. Our model is isomorphicto a search model under random hiring but allows for selective hiring. With selectivehiring, the positive predictions of the model change very little, but the welfare costsof unemployment are much larger because unemployment risk is distributed unequallyacross workers. As a result, optimal unemployment insurance may be higher and welfareis lower if hiring is selective.
Resumo:
A method to estimate DSGE models using the raw data is proposed. The approachlinks the observables to the model counterparts via a flexible specification which doesnot require the model-based component to be solely located at business cycle frequencies,allows the non model-based component to take various time series patterns, andpermits model misspecification. Applying standard data transformations induce biasesin structural estimates and distortions in the policy conclusions. The proposed approachrecovers important model-based features in selected experimental designs. Twowidely discussed issues are used to illustrate its practical use.
Resumo:
Using a suitable Hull and White type formula we develop a methodology to obtain asecond order approximation to the implied volatility for very short maturities. Using thisapproximation we accurately calibrate the full set of parameters of the Heston model. Oneof the reasons that makes our calibration for short maturities so accurate is that we alsotake into account the term-structure for large maturities. We may say that calibration isnot "memoryless", in the sense that the option's behavior far away from maturity doesinfluence calibration when the option gets close to expiration. Our results provide a wayto perform a quick calibration of a closed-form approximation to vanilla options that canthen be used to price exotic derivatives. The methodology is simple, accurate, fast, andit requires a minimal computational cost.
Resumo:
A new algorithm called the parameterized expectations approach(PEA) for solving dynamic stochastic models under rational expectationsis developed and its advantages and disadvantages are discussed. Thisalgorithm can, in principle, approximate the true equilibrium arbitrarilywell. Also, this algorithm works from the Euler equations, so that theequilibrium does not have to be cast in the form of a planner's problem.Monte--Carlo integration and the absence of grids on the state variables,cause the computation costs not to go up exponentially when the numberof state variables or the exogenous shocks in the economy increase. \\As an application we analyze an asset pricing model with endogenousproduction. We analyze its implications for time dependence of volatilityof stock returns and the term structure of interest rates. We argue thatthis model can generate hump--shaped term structures.