152 resultados para asymptotically almost periodic functions
Resumo:
An exact analytical expression for the effective diffusion coefficient of an overdamped Brownian particle in a tilted periodic potential is derived for arbitrary potentials and arbitrary strengths of the thermal noise. Near the critical tilt (threshold of deterministic running solutions) a scaling behavior for weak thermal noise is revealed and various universality classes are identified. In comparison with the bare (potential-free) thermal diffusion, the effective diffusion coefficient in a critically tilted periodic potential may be, in principle, arbitrarily enhanced. For a realistic experimental setup, an enhancement by 14 orders of magnitude is predicted so that thermal diffusion should be observable on a macroscopic scale at room temperature.
Resumo:
Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mixtures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correlation functions and related diffusion coefficients have been calculated. Special attention has been paid to the dynamic cross correlations which have been computed through recently introduced relative mean molecular velocity correlation functions which are independent on the reference frame. The differences between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-fixed, number-fixed, and solvent-fixed) are discussed.
Resumo:
In this paper we study the set of periods of holomorphic maps on compact manifolds, using the periodic Lefschetz numbers introduced by Dold and Llibre, which can be computed from the homology class of the map. We show that these numbers contain information about the existence of periodic points of a given period; and, if we assume the map to be transversal, then they give us the exact number of such periodic orbits. We apply this result to the complex projective space of dimension n and to some special type of Hopf surfaces, partially characterizing their set of periods. In the first case we also show that any holomorphic map of CP(n) of degree greater than one has infinitely many distinct periodic orbits, hence generalizing a theorem of Fornaess and Sibony. We then characterize the set of periods of a holomorphic map on the Riemann sphere, hence giving an alternative proof of Baker's theorem.
Resumo:
We prove some results concerning the possible configuration s of Herman rings for transcendental meromorphic functions. We show that one pole is enough to obtain cycles of Herman rings of arbitrary period a nd give a sufficient condition for a configuration to be realizable.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
By simulations of the Barkley model, action of uniform periodic nonresonant forcing on scroll rings and wave turbulence in three-dimensional excitable media is investigated. Sufficiently strong rapid forcing converts expanding scroll rings into the collapsing ones and suppresses the Winfree turbulence caused by the negative tension of wave filaments. Slow strong forcing has an opposite effect, leading to expansion of scroll rings and induction of the turbulence. These effects are explained in the framework of the phenomenological kinematic theory of scroll waves.
Resumo:
We study the Fréedericksz transition in a twist geometry under the effect of a periodic modulation of the magnitude of the applied magnetic field. We find a shift of the effective instability point and a time-periodic state with anomalously large orientational fluctuations. This time-periodic state occurs below threshold and it is accompanied by a dynamically stabilized spatial pattern. Beyond the instability the emergence of a transient pattern can be significantly delayed by a fast modulation, allowing the observation of pattern selection by slowing down the reorientational dynamics.
Resumo:
The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.
Resumo:
The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.
Resumo:
We calculate the effective diffusion coefficient in convective flows which are well described by one spatial mode. We use an expansion in the distance from onset and homogenization methods to obtain an explicit expression for the transport coefficient. We find that spatially periodic fluid flow enhances the molecular diffusion D by a term proportional to D-1. This enhancement should be easy to observe in experiments, since D is a small number.
Resumo:
Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.