142 resultados para approximation methods
Resumo:
The Brueckner-Hartree-Fock formalism is applied to study spin polarized neutron matter properties. Results of the total energy per particle as a function of the spin polarization and density are presented for two modern realistic nucleon-nucleon interactions, Nijmegen II and Reid93. We find that the dependence of the energy on the spin polarization is practically parabolic in the full range of polarizations. The magnetic susceptibility of the system is computed. Our results show no indication of a ferromagnetic transition which becomes even more difficult as the density increases.
Resumo:
In this paper we propose a generalization of the density functional theory. The theory leads to single-particle equations of motion with a quasilocal mean-field operator, which contains a quasiparticle position-dependent effective mass and a spin-orbit potential. The energy density functional is constructed using the extended Thomas-Fermi approximation and the ground-state properties of doubly magic nuclei are considered within the framework of this approach. Calculations were performed using the finite-range Gogny D1S forces and the results are compared with the exact Hartree-Fock calculations
Resumo:
The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v2 central interaction which is derived from Reid¿s soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei.
Resumo:
The real part of the optical potential for heavy ion elastic scattering is obtained by double folding of the nuclear densities with a density-dependent nucleon-nucleon effective interaction which was successful in describing the binding, size, and nucleon separation energies in spherical nuclei. A simple analytical form is found to differ from the resulting potential considerably less than 1% all through the important region. This analytical potential is used so that only few points of the folding need to be computed. With an imaginary part of the Woods-Saxon type, this potential predicts the elastic scattering angular distribution in very good agreement with experimental data, and little renormalization (unity in most cases) is needed.
Resumo:
Exact solutions of the classical equations corresponding to the leading-logarithm approximation are obtained. They are classified by an (integer) topological number.
Resumo:
We present a numerical method for generating vortex rings in Bose-Einstein condensates confined in axially symmetric traps. The vortex ring is generated using the line-source approximation for the vorticity, i.e., the curl of the superfluid velocity field is different from zero only on a circumference of a given radius located on a plane perpendicular to the symmetry axis and coaxial with it. The particle density is obtained by solving a modified Gross-Pitaevskii equation that incorporates the effect of the velocity field. We discuss the appearance of density profiles, the vortex core structure, and the vortex nucleation energy, i.e., the energy difference between vortical and ground-state configurations. This is used to present a qualitative description of the vortex dynamics.
Resumo:
The interaction of the low-lying pseudoscalar mesons with the ground-state baryons in the charm sector is studied within a coupled-channel approach using a t-channel vector-exchange driving force. The amplitudes describing the scattering of the pseudoscalar mesons off the ground-state baryons are obtained by solving the Lippmann-Schwinger equation. We analyze in detail the effects of going beyond the t=0 approximation. Our model predicts the dynamical generation of several open-charm baryon resonances in different isospin and strangeness channels, some of which can be clearly identified with recently observed states.
Resumo:
Elastic scattering of relativistic electrons and positrons by atoms is considered in the framework of the static field approximation. The scattering field is expressed as a sum of Yukawa terms to allow the use of various approximations. Accurate phase shifts have been computed by combining Bühring¿s power-series method with the WKB and Born approximations. This combined procedure allows the evaluation of differential cross sections for kinetic energies up to several tens of MeV. Numerical results are used to analyze the validity of several approximate methods, namely the first- and second-order Born approximations and the screened Mott formula, which are frequently adopted as the basis of multiple scattering theories and Monte Carlo simulations of electron and positron transport.
Resumo:
We calculate the ripplon field contribution to the self-energy of an electron exterior to a liquid for planar and spherical geometries. We compare the full dielectric calculation of the electron-liquid interaction with the simpler alternative method consisting of integrating the electron-atom static-induced-dipolar potential through the whole liquid volume. We obtain good agreement between both methods for a nonpolar liquid such as 4He but differences up to 40% for a polar liquid such as water. We study the conditions under which the ripplon contribution to the self-energy is a perturbation. For an electron moving parallel to a planar liquid surface, we calculate the ripplon contribution to its stopping power. For this dynamical case, we conclude that the alternative method is a good approximation even for polar liquids.
Resumo:
One of the most important problems in optical pattern recognition by correlation is the appearance of sidelobes in the correlation plane, which causes false alarms. We present a method that eliminate sidelobes of up to a given height if certain conditions are satisfied. The method can be applied to any generalized synthetic discriminant function filter and is capable of rejecting lateral peaks that are even higher than the central correlation. Satisfactory results were obtained in both computer simulations and optical implementation.
Resumo:
We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.
Resumo:
It has been suggested that a solution to the transport equation which includes anisotropic scattering can be approximated by the solution to a telegrapher's equation [A.J. Ishimaru, Appl. Opt. 28, 2210 (1989)]. We show that in one dimension the telegrapher's equation furnishes an exact solution to the transport equation. In two dimensions, we show that, since the solution can become negative, the telegrapher's equation will not furnish a usable approximation. A comparison between simulated data in three dimensions indicates that the solution to the telegrapher's equation is a good approximation to that of the full transport equation at the times at which the diffusion equation furnishes an equally good approximation.