110 resultados para WEIGHTED EARLINESS
Resumo:
Background: Although randomized clinical trials (RCTs) are considered the gold standard of evidence, their reporting is often suboptimal. Trial registries have the potential to contribute important methodologic information for critical appraisal of study results. Methods and Findings: The objective of the study was to evaluate the reporting of key methodologic study characteristics in trial registries. We identified a random sample (n = 265) of actively recruiting RCTs using the World Health Organization International Clinical Trials Registry Platform (ICTRP) search portal in 2008. We assessed the reporting of relevant domains from the Cochrane Collaboration’s ‘Risk of bias’ tool and other key methodological aspects. Our primary outcomes were the proportion of registry records with adequate reporting of random sequence generation, allocation concealment, blinding, and trial outcomes. Two reviewers independently assessed each record. Weighted overall proportions in the ICTRP search portal for adequate reporting of sequence generation, allocation concealment, blinding (including and excluding open label RCT) and primary outcomes were 5.7% (95% CI 3.0–8.4%), 1.4% (0–2.8%), 41% (35–47%), 8.4% (4.1–13%), and 66% (60–72%), respectively. The proportion of adequately reported RCTs was higher for registries that used specific methodological fields for describing methods of randomization and allocation concealment compared to registries that did not. Concerning other key methodological aspects, weighted overall proportions of RCTs with adequately reported items were as follows: eligibility criteria (81%), secondary outcomes (46%), harm (5%) follow-up duration (62%), description of the interventions (53%) and sample size calculation (1%). Conclusions: Trial registries currently contain limited methodologic information about registered RCTs. In order to permit adequate critical appraisal of trial results reported in journals and registries, trial registries should consider requesting details on key RCT methods to complement journal publications. Full protocols remain the most comprehensive source of methodologic information and should be made publicly available.
Resumo:
It is not known whether rainfall increases the risk of sporadic cases of Legionella pneumonia. We sought to test this hypothesis in a prospective observational cohort study of non-immunosuppressed adults hospitalized for community-acquired pneumonia (1995-2011). Cases with Legionella pneumonia were compared with those with non-Legionella pneumonia. Using daily rainfall data obtained from the regional meteorological service we examined patterns of rainfall over the days prior to admission in each study group. Of 4168 patients, 231 (5.5%) had Legionella pneumonia. The diagnosis was based on one or more of the following: sputum (41 cases), antigenuria (206) and serology (98). Daily rainfall average was 0.556 liters/m2 in the Legionella pneumonia group vs. 0.328 liters/m2 for non-Legionella pneumonia cases (p = 0.04). A ROC curve was plotted to compare the incidence of Legionella pneumonia and the weighted median rainfall. The cut-off point was 0.42 (AUC 0.54). Patients who were admitted to hospital with a prior weighted median rainfall higher than 0.42 were more likely to have Legionella pneumonia (OR 1.35; 95% CI 1.02-1.78; p = .03). Spearman Rho correlations revealed a relationship between Legionella pneumonia and rainfall average during each two-week reporting period (0.14; p = 0.003). No relationship was found between rainfall average and non-Legionella pneumonia cases (−0.06; p = 0.24). As a conclusion, rainfall is a significant risk factor for sporadic Legionella pneumonia. Physicians should carefully consider Legionella pneumonia when selecting diagnostic tests and antimicrobial therapy for patients presenting with CAP after periods of rainfall.
Resumo:
A new method for decision making that uses the ordered weighted averaging (OWA) operator in the aggregation of the information is presented. It is used a concept that it is known in the literature as the index of maximum and minimum level (IMAM). This index is based on distance measures and other techniques that are useful for decision making. By using the OWA operator in the IMAM, we form a new aggregation operator that we call the ordered weighted averaging index of maximum and minimum level (OWAIMAM) operator. The main advantage is that it provides a parameterized family of aggregation operators between the minimum and the maximum and a wide range of special cases. Then, the decision maker may take decisions according to his degree of optimism and considering ideals in the decision process. A further extension of this approach is presented by using hybrid averages and Choquet integrals. We also develop an application of the new approach in a multi-person decision-making problem regarding the selection of strategies.
Resumo:
Laser diffraction (LD) and static image analysis (SIA) of rectangular particles [United States Pharmacopeia, USP30-NF25, General Chapter <776>, Optical Miroscopy.] have been systematically studied. To rule out sample dispersion and particle orientation as the root cause of differences in size distribution profiles, we immobilize powder samples on a glass plate by means of a dry disperser. For a defined region of the glass plate, we measure the diffraction pattern as induced by the dispersed particles, and the 2D dimensions of the individual particles using LD and optical microscopy, respectively. We demonstrate a correlation between LD and SIA, with the scattering intensity of the individual particles as the dominant factor. In theory, the scattering intensity is related to the square of the projected area of both spherical and rectangular particles. In traditional LD the size distribution profile is dominated by the maximum projected area of the particles (A). The diffraction diameters of a rectangular particle with length L and breadth B as measured by the LD instrument approximately correspond to spheres of diameter ØL and ØB respectively. Differences in the scattering intensity between spherical and rectangular particles suggest that the contribution made to the overall LD volume probability distribution by each rectangular particle is proportional to A2/L and A2/B. Accordingly, for rectangular particles the scattering intensity weighted diffraction diameter (SIWDD) explains an overestimation of their shortest dimension and an underestimation of their longest dimension. This study analyzes various samples of particles whose length ranges from approximately 10 to 1000 μm. The correlation we demonstrate between LD and SIA can be used to improve validation of LD methods based on SIA data for a variety of pharmaceutical powders all with a different rectangular particle size and shape.
Resumo:
Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.
Resumo:
We present the induced generalized ordered weighted averaging (IGOWA) operator. It is a new aggregation operator that generalizes the OWA operator by using the main characteristics of two well known aggregation operators: the generalized OWA and the induced OWA operator. Then, this operator uses generalized means and order inducing variables in the reordering process. With this formulation, we get a wide range of aggregation operators that include all the particular cases of the IOWA and the GOWA operator, and a lot of other cases such as the induced ordered weighted geometric (IOWG) operator and the induced ordered weighted quadratic averaging (IOWQA) operator. We further generalize the IGOWA operator by using quasi-arithmetic means. The result is the Quasi-IOWA operator. Finally, we also develop a numerical example of the new approach in a financial decision making problem.
Resumo:
Ordered weighted averaging (OWA) operators and their extensions are powerful tools used in numerous decision-making problems. This class of operator belongs to a more general family of aggregation operators, understood as discrete Choquet integrals. Aggregation operators are usually characterized by indicators. In this article four indicators usually associated with the OWA operator are extended to discrete Choquet integrals: namely, the degree of balance, the divergence, the variance indicator and Renyi entropies. All of these indicators are considered from a local and a global perspective. Linearity of indicators for linear combinations of capacities is investigated and, to illustrate the application of results, indicators of the probabilistic ordered weighted averaging -POWA- operator are derived. Finally, an example is provided to show the application to a specific context.
Resumo:
We investigate how correlations between the diversity of the connectivity of networks and the dynamics at their nodes affect the macroscopic behavior. In particular, we study the synchronization transition of coupled stochastic phase oscillators that represent the node dynamics. Crucially in our work, the variability in the number of connections of the nodes is correlated with the width of the frequency distribution of the oscillators. By numerical simulations on Erdös-Rényi networks, where the frequencies of the oscillators are Gaussian distributed, we make the counterintuitive observation that an increase in the strength of the correlation is accompanied by an increase in the critical coupling strength for the onset of synchronization. We further observe that the critical coupling can solely depend on the average number of connections or even completely lose its dependence on the network connectivity. Only beyond this state, a weighted mean-field approximation breaks down. If noise is present, the correlations have to be stronger to yield similar observations.
Resumo:
In recent years there has been growing interest in composite indicators as an efficient tool of analysis and a method of prioritizing policies. This paper presents a composite index of intermediary determinants of child health using a multivariate statistical approach. The index shows how specific determinants of child health vary across Colombian departments (administrative subdivisions). We used data collected from the 2010 Colombian Demographic and Health Survey (DHS) for 32 departments and the capital city, Bogotá. Adapting the conceptual framework of Commission on Social Determinants of Health (CSDH), five dimensions related to child health are represented in the index: material circumstances, behavioural factors, psychosocial factors, biological factors and the health system. In order to generate the weight of the variables, and taking into account the discrete nature of the data, principal component analysis (PCA) using polychoric correlations was employed in constructing the index. From this method five principal components were selected. The index was estimated using a weighted average of the retained components. A hierarchical cluster analysis was also carried out. The results show that the biggest differences in intermediary determinants of child health are associated with health care before and during delivery.
Resumo:
This paper presents a composite index of early childhood health using a multivariate statistical approach. The index shows how child health varies across Colombian departments, -administrative subdivisions-. In recent years there has been growing interest in composite indicators as an efficient analysis tool and a way of prioritizing policies. These indicators not only enable multi-dimensional phenomena to be simplified but also make it easier to measure, visualize, monitor and compare a country’s performance in particular issues. We used data collected from the Colombian Demographic and Health Survey, DHS, for 32 departments and the capital city, Bogotá, in 2005 and 2010. The variables included in the index provide a measure of three dimensions related to child health: health status, health determinants and the health system. In order to generate the weight of the variables and take into account the discrete nature of the data, we employed a principal component analysis, PCA, using polychoric correlation. From this method, five principal components were selected. The index was estimated using a weighted average of the components retained. A hierarchical cluster analysis was also carried out. We observed that the departments ranking in the lowest positions are located on the Colombian periphery. They are departments with low per capita incomes and they present critical social indicators. The results suggest that the regional disparities in child health may be associated with differences in parental characteristics, household conditions and economic development levels, which makes clear the importance of context in the study of child health in Colombia.
Resumo:
Satellite transmitters and geographic-positioning-system devices often add substantial mass to birds to which they are attached. Studies on the effects of such instruments have focused on indirect measures, whereas the direct influence of extra mass on pelagic behavior is poorly known. We used 2.5-g geolocators to investigate the effect of extra mass on the pelagic behavior of Cory's Shearwaters (Calonectris diomedea) by comparing the traits of a single foraging trip among a group carrying 30-g weights, a group carrying 60-g weights, and a control group. The weights were attached to the birds' backs using typical techniques for attaching satellite transmitters to seabirds. The extra mass increased the duration of the birds' trips and decreased their foraging efficiency and mass gained at sea. These indirect effects may be related to foraging traits: weighted birds showed a greater search effort than control birds, traveled greater distances, covered a greater foraging area, and increased the maximum foraging range. Furthermore, the time spent on the sea surface at night was greater for weighted than for control groups, which showed that the extra mass also affected activity patterns. Our results underline the need to quantify the effects of monitoring equipment commonly used to study the pelagic behavior of seabirds. We suggest that geolocators can be used to obtain control data on foraging-trip movements and activity patterns.
Resumo:
While general equilibrium theories of trade stress the role of third-country effects, little work has been done in the empirical foreign direct investment (FDI) literature to test such spatial linkages. This paper aims to provide further insights into long-run determinants of Spanish FDI by considering not only bilateral but also spatially weighted third-country determinants. The few studies carried out so far have focused on FDI flows in a limited number of countries. However, Spanish FDI outflows have risen dramatically since 1995 and today account for a substantial part of global FDI. Therefore, we estimate recently developed Spatial Panel Data models by Maximum Likelihood (ML) procedures for Spanish outflows (1993-2004) to top-50 host countries. After controlling for unobservable effects, we find that spatial interdependence matters and provide evidence consistent with New Economic Geography (NEG) theories of agglomeration, mainly due to complex (vertical) FDI motivations. Spatial Error Models estimations also provide illuminating results regarding the transmission mechanism of shocks.
Resumo:
Objectives: The objectives of this study is to review the set of criteria of the Institute of Medicine (IOM) for priority-setting in research with addition of new criteria if necessary, and to develop and evaluate the reliability and validity of the final priority score. Methods: Based on the evaluation of 199 research topics, forty-five experts identified additional criteria for priority-setting, rated their relevance, and ranked and weighted them in a three-round modified Delphi technique. A final priority score was developed and evaluated. Internal consistency, test–retest and inter-rater reliability were assessed. Correlation with experts’ overall qualitative topic ratings were assessed as an approximation to validity. Results: All seven original IOM criteria were considered relevant and two new criteria were added (“potential for translation into practice”, and “need for knowledge”). Final ranks and relative weights differed from those of the original IOM criteria: “research impact on health outcomes” was considered the most important criterion (4.23), as opposed to “burden of disease” (3.92). Cronbach’s alpha (0.75) and test–retest stability (interclass correlation coefficient = 0.66) for the final set of criteria were acceptable. The area under the receiver operating characteristic curve for overall assessment of priority was 0.66. Conclusions: A reliable instrument for prioritizing topics in clinical and health services research has been developed. Further evaluation of its validity and impact on selecting research topics is required
Resumo:
Background: Epidemiological evidence of the effects of long-term exposure to air pollu tion on the chronic processes of athero genesis is limited. Objective: We investigated the association of long-term exposure to traffic-related air pollu tion with subclinical atherosclerosis, measured by carotid intima media thickness (IMT) and ankle–brachial index (ABI). Methods: We performed a cross-sectional analysis using data collected during the reexamination (2007–2010) of 2,780 participants in the REGICOR (Registre Gironí del Cor: the Gerona Heart Register) study, a population-based prospective cohort in Girona, Spain. Long-term exposure across residences was calculated as the last 10 years’ time-weighted average of residential nitrogen dioxide (NO2) estimates (based on a local-scale land-use regression model), traffic intensity in the nearest street, and traffic intensity in a 100 m buffer. Associations with IMT and ABI were estimated using linear regression and multinomial logistic regression, respectively, controlling for sex, age, smoking status, education, marital status, and several other potential confounders or intermediates. Results: Exposure contrasts between the 5th and 95th percentiles for NO2 (25 μg/m), traffic intensity in the nearest street (15,000 vehicles/day), and traffic load within 100 m (7,200,000 vehicle-m/day) were associated with differences of 0.56% (95% CI: –1.5, 2.6%), 2.32% (95% CI: 0.48, 4.17%), and 1.91% (95% CI: –0.24, 4.06) percent difference in IMT, respectively. Exposures were positively associated with an ABI of > 1.3, but not an ABI of < 0.9. Stronger associations were observed among those with a high level of education and in men ≥ 60 years of age. Conclusions: Long-term traffic-related exposures were associated with subclinical markers of atherosclerosis. Prospective studies are needed to confirm associations and further examine differences among population subgroups.key words: ankle–brachial index, average daily traffic, cardiovascular disease, exposure assessment, exposure to tailpipe emissions, intima media thickness, land use regression model, Mediterranean diet, nitrogen dioxide
Resumo:
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.