98 resultados para Statistical Convergence
Resumo:
Background: The repertoire of statistical methods dealing with the descriptive analysis of the burden of a disease has been expanded and implemented in statistical software packages during the last years. The purpose of this paper is to present a web-based tool, REGSTATTOOLS http://regstattools.net intended to provide analysis for the burden of cancer, or other group of disease registry data. Three software applications are included in REGSTATTOOLS: SART (analysis of disease"s rates and its time trends), RiskDiff (analysis of percent changes in the rates due to demographic factors and risk of developing or dying from a disease) and WAERS (relative survival analysis). Results: We show a real-data application through the assessment of the burden of tobacco-related cancer incidence in two Spanish regions in the period 1995-2004. Making use of SART we show that lung cancer is the most common cancer among those cancers, with rising trends in incidence among women. We compared 2000-2004 data with that of 1995-1999 to assess percent changes in the number of cases as well as relative survival using RiskDiff and WAERS, respectively. We show that the net change increase in lung cancer cases among women was mainly attributable to an increased risk of developing lung cancer, whereas in men it is attributable to the increase in population size. Among men, lung cancer relative survival was higher in 2000-2004 than in 1995-1999, whereas it was similar among women when these time periods were compared. Conclusions: Unlike other similar applications, REGSTATTOOLS does not require local software installation and it is simple to use, fast and easy to interpret. It is a set of web-based statistical tools intended for automated calculation of population indicators that any professional in health or social sciences may require.
Resumo:
A statistical indentation method has been employed to study the hardness value of fire-refined high conductivity copper, using nanoindentation technique. The Joslin and Oliver approach was used with the aim to separate the hardness (H) influence of copper matrix, from that of inclusions and grain boundaries. This approach relies on a large array of imprints (around 400 indentations), performed at 150 nm of indentation depth. A statistical study using a cumulative distribution function fit and Gaussian simulated distributions, exhibits that H for each phase can be extracted when the indentation depth is much lower than the size of the secondary phases. It is found that the thermal treatment produces a hardness increase, due to the partly re-dissolution of the inclusions (mainly Pb and Sn) in the matrix.
Resumo:
In this article, the fusion of a stochastic metaheuristic as Simulated Annealing (SA) with classical criteria for convergence of Blind Separation of Sources (BSS), is shown. Although the topic of BSS, by means of various techniques, including ICA, PCA, and neural networks, has been amply discussed in the literature, to date the possibility of using simulated annealing algorithms has not been seriously explored. From experimental results, this paper demonstrates the possible benefits offered by SA in combination with high order statistical and mutual information criteria for BSS, such as robustness against local minima and a high degree of flexibility in the energy function.
Resumo:
The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.
Resumo:
Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.
Resumo:
GDP has usually been used as a proxy for human well-being. Nevertheless, other social aspects should also be considered, such as life expectancy, infant mortality, educational enrolment and crime issues. With this paper we investigate not only economic convergence but also social convergence between regions in a developing country, Colombia, in the period 1975-2005. We consider several techniques in our analysis: sigma convergence, stochastic kernel estimations, and also several empirical models to find out the beta convergence parameter (cross section and panel estimates, with and without spatial dependence). The main results confirm that we can talk about convergence in Colombia in key social variables, although not in the classic economic variable, GDP per capita. We have also found that spatial autocorrelation reinforces convergence processes through deepening market and social factors, while isolation condemns regions to nonconvergence.
Resumo:
This paper analyses the differential impact of human capital, in terms of different levels of schooling, on regional productivity and convergence. The potential existence of geographical spillovers of human capital is also considered by applying spatial panel data techniques. The empirical analysis of Spanish provinces between 1980 and 2007 confirms the positive impact of human capital on regional productivity and convergence, but reveals no evidence of any positive geographical spillovers of human capital. In fact, in some specifications the spatial lag presented by tertiary studies has a negative effect on the variables under consideration.
Resumo:
In the current study, we evaluated various robust statistical methods for comparing two independent groups. Two scenarios for simulation were generated: one of equality and another of population mean differences. In each of the scenarios, 33 experimental conditions were used as a function of sample size, standard deviation and asymmetry. For each condition, 5000 replications per group were generated. The results obtained by this study show an adequate type error I rate but not a high power for the confidence intervals. In general, for the two scenarios studied (mean population differences and not mean population differences) in the different conditions analysed, the Mann-Whitney U-test demonstrated strong performance, and a little worse the t-test of Yuen-Welch.