121 resultados para MIP Mathematical Programming Job Shop Scheduling
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test thecontroller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in mealestimation
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
Aquest treball final de carrera es basa en la creació d'una borsa de treball on-line, distribuïda i multi-dispositiu. Ha estat creada a partir de noves tecnologies com Play Framework i Twiter Bootstrap, utilitzant els llenguatges Java i Scala, usant marcatge HTML5 i desplegada en un servidor de cloud computing anomenat Heroku.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
This article presents an optimization methodology of batch production processes assembled by shared resources which rely on a mapping of state-events into time-events allowing in this way the straightforward use of a well consolidated scheduling policies developed for manufacturing systems. A technique to generate the timed Petri net representation from a continuous dynamic representation (Differential-Algebraic Equations systems (DAEs)) of the production system is presented together with the main characteristics of a Petri nets-based tool implemented for optimization purposes. This paper describes also how the implemented tool generates the coverability tree and how it can be pruned by a general purpose heuristic. An example of a distillation process with two shared batch resources is used to illustrate the optimization methodology proposed.
Resumo:
Se estudia la programación de la producción en sistemas flow shop híbrido con tiempos depreparación dependientes de la secuencia de piezas a fabricar. Las piezas pueden pertenecer adiferentes familias y las máquinas requerirán un tiempo de preparación cada vez que se debacambiar de familia. Se han desarrollado procedimientos heurísticos para el caso monocriterio enel que el objetivo buscado en la programación de la producción es la minimización del retrasomedio, equivalente a minimizar la suma de retrasos de las piezas, y para el caso bicriterio en elque se tendrá en cuenta tanto la minimización de una función objetivo formada por la sumaponderada del retraso medio más la suma de los tiempos medios de proceso. Además se hanadaptado los métodos implementados para trabajar bajo la restricción nowait.
Resumo:
This paper analyses the effect of job accessibility by public and private transport on labour market outcomes in the metropolitan area of Barcelona. Beyond employment, we consider the effect of job accessibility on job-education mismatch, which represents a relevant aspect of job quality. We adopt a recursive system of equations that models car availability, employment and mismatch. Public transport accessibility appears as an exogenous variable in the three equations. Even though it may reflect endogenous residential sorting, falsification proofs suggest that the estimated effect of public transport accessibility is not entirely driven by the endogenous nature of residential decisions.
Resumo:
This paper presents a programming environment for supporting learning in STEM, particularly mobile robotic learning. It was designed to maintain progressive learning for people with and without previous knowledge of programming and/or robotics. The environment was multi platform and built with open source tools. Perception, mobility, communication, navigation and collaborative behaviour functionalities can be programmed for different mobile robots. A learner is able to programme robots using different programming languages and editor interfaces: graphic programming interface (basic level), XML-based meta language (intermediate level) or ANSI C language (advanced level). The environment supports programme translation transparently into different languages for learners or explicitly on learners’ demand. Learners can access proposed challenges and learning interfaces by examples. The environment was designed to allow characteristics such as extensibility, adaptive interfaces, persistence and low software/hardware coupling. Functionality tests were performed to prove programming environment specifications. UV BOT mobile robots were used in these tests
Resumo:
This paper presents a research concerning the conversion of non-accessible web pages containing mathematical formulae into accessible versions through an OCR (Optical Character Recognition) tool. The objective of this research is twofold. First, to establish criteria for evaluating the potential accessibility of mathematical web sites, i.e. the feasibility of converting non-accessible (non-MathML) math sites into accessible ones (Math-ML). Second, to propose a data model and a mechanism to publish evaluation results, making them available to the educational community who may use them as a quality measurement for selecting learning material.Results show that the conversion using OCR tools is not viable for math web pages mainly due to two reasons: many of these pages are designed to be interactive, making difficult, if not almost impossible, a correct conversion; formula (either images or text) have been written without taking into account standards of math writing, as a consequence OCR tools do not properly recognize math symbols and expressions. In spite of these results, we think the proposed methodology to create and publish evaluation reports may be rather useful in other accessibility assessment scenarios.
Resumo:
The object of this project is to schedule a ctitious European basketball competition with many teams situated a long distances. The schedule must be fair, feasible and economical, which means that the total distance trav- eled by every team must be the minimal possible. First, we de ne the sport competition terminology and study di erent competition systems, focusing on the NBA and the Euroleague systems. Then we de ne concepts of graph theory and spherical distance that will be needed. Next we propose a com- petition system, explaining where will be allocated the teams and how will be the scheduling. Then there is a description of the programs that have been implemented, and, nally, the complete schedule is displayed, and some possible improvements are mentioned.
Resumo:
Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.
Resumo:
The resource utilization level in open laboratories of several universities has been shown to be very low. Our aim is to take advantage of those idle resources for parallel computation without disturbing the local load. In order to provide a system that lets us execute parallel applications in such a non-dedicated cluster, we use an integral scheduling system that considers both Space and Time sharing concerns. For dealing with the Time Sharing (TS) aspect, we use a technique based on the communication-driven coscheduling principle. This kind of TS system has some implications on the Space Sharing (SS) system, that force us to modify the way job scheduling is traditionally done. In this paper, we analyze the relation between the TS and the SS systems in a non-dedicated cluster. As a consequence of this analysis, we propose a new technique, termed 3DBackfilling. This proposal implements the well known SS technique of backfilling, but applied to an environment with a MultiProgramming Level (MPL) of the parallel applications that is greater than one. Besides, 3DBackfilling considers the requirements of the local workload running on each node. Our proposal was evaluated in a PVM/MPI Linux cluster, and it was compared with several more traditional SS policies applied to non-dedicated environments.
Resumo:
The impact of personality and job characteristics on parental rearing styles was compared in 353 employees. Hypotheses concerning the relationships between personality and job variables were formulated in accordance with findings in past research and the Belsky’s model (1984). Structural equation nested models showed that Aggression-hostility, Sociability and job Demand were predictive of Rejection and Emotional Warmth parenting styles, providing support for some of the hypothesized relationships. The findings suggest a well-balanced association of personality variables with both parenting styles: Aggression-Hostility was positively related to Rejection and negatively to Emotional Warmth, whereas Sociability was positively related to Emotional Warmth and negatively related to Rejection. Personality dimensions explained a higher amount of variance in observed parenting styles. However, a model that considered both, personality and job dimensions as antecedent variables of parenting was the best representation of observed data, as both systems play a role in the prediction of parenting behavior.