134 resultados para Landau-Lifshitz differential equation
Resumo:
Isothermal magnetization curves up to 23 T have been measured in Gd5Si1.8Ge2.2. We show that the values of the entropy change at the first-order magnetostructural transition, obtained from the Clausius-Clapeyron equation and the Maxwell relation, are coincident, provided the Maxwell relation is evaluated only within the transition region and the maximum applied field is high enough to complete the transition. These values are also in agreement with the entropy change obtained from differential scanning calorimetry. We also show that a simple phenomenological model based on the temperature and field dependence of the magnetization accounts for these results.
Resumo:
We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in systems of N=6 and 7 electrons and a filling factor close to 2. We compare our results with those obtained in double quantum layers and single quantum dots. The Kohn theorem is also discussed.
Resumo:
We consider systems described by nonlinear stochastic differential equations with multiplicative noise. We study the relaxation time of the steady-state correlation function as a function of noise parameters. We consider the white- and nonwhite-noise case for a prototype model for which numerical data are available. We discuss the validity of analytical approximation schemes. For the white-noise case we discuss the results of a projector-operator technique. This discussion allows us to give a generalization of the method to the non-white-noise case. Within this generalization, we account for the growth of the relaxation time as a function of the correlation time of the noise. This behavior is traced back to the existence of a non-Markovian term in the equation for the correlation function.
Resumo:
The properties of hot, dense stellar matter are investigated with a finite temperature nuclear Thomas-Fermi model.
Resumo:
A new method to solve the Lorentz-Dirac equation in the presence of an external electromagnetic field is presented. The validity of the approximation is discussed, and the method is applied to a particle in the presence of a constant magnetic field.
Resumo:
A pseudoclassical model for a spinning nonrelativistic particle is presented. The model contains two first-class constraints which after quantization give rise to the Levy-Leblond equation for a spin-1/2 particle.
Resumo:
The Swift-Hohenberg equation is studied in the presence of a multiplicative noise. This stochastic equation could describe a situation in which a noise has been superimposed on the temperature gradient between the two plates of a Rayleigh-Bnard cell. A linear stability analysis and numerical simulations show that, in constrast to the additive-noise case, convective structures appear in a regime in which a deterministic analysis predicts a homogeneous solution.
Resumo:
The kinetics of crystallization of four amorphous (or partially amorphous) melt spun Nd-Fe-B alloys induced by thermal treatment is studied by means of differential scanning calorimetry and scanning electron microscopy, In the range of temperatures explored experimentally, the crystallization process is thermally activated and generally proceeds in various stages. The Curie temperature and the crystallization behavior have been measured. The apparent activation energy of crystallization of most of the crystallization stages has been determined for each melt spun alloy. The explicit form of the kinetic equation that best describes the first stage of crystallization has been found. It follows in general the Johnson-Mehl-Avrami-Erofe'ev model, but clear deviations to that model occur for one alloy. Scanning electron microscopy demonstrates that preferentially hetereogeneous nucleation occurs at the ribbon surface which was in contact with the wheel. From crystallization kinetics results the lower part of the experimental time-temperature-transformation curves for all studied alloys are deduced and extrapolated to the high temperature limit of their range of validity, also deduced.
Resumo:
Interaction between collective monopole oscillations of a trapped Bose-Einstein condensate and thermal excitations is investigated by means of perturbation theory. We assume spherical symmetry to calculate the matrix elements by solving the linearized Gross-Pitaevskii equations. We use them to study the resonances of the condensate induced by temperature when an external perturbation of the trapping frequency is applied and to calculate the Landau damping of the oscillations.
Resumo:
We have studied the interaction between the low-lying transverse collective oscillations and the thermal excitations of an elongated Bose-Einstein condensate by means of perturbation theory. We consider a cylindrical trapped condensate and calculate the transverse elementary excitations at zero temperature by solving the linearized Gross-Pitaevskii equations in two dimensions (2D). We use them to calculate the matrix elements between the thermal excited states and the quasi-2D collective modes. The Landau damping of transverse collective modes is studied as a function of temperature. At low temperatures, the corresponding damping rate is in agreement with the experimental data for the decay of the transverse quadrupole mode, but it is too small to explain the observed slow decay of the transverse breathing mode. The reason for this discrepancy is discussed.
Resumo:
Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotemporal structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity, correlation time, and correlation length appear explicitly. The different effects of these parameters are discussed for the Ginzburg-Landau and Schlögl models. We obtain an analytical expression for the front velocity as a function of the noise parameters. Numerical simulation results are in a good agreement with the theoretical predictions.
Resumo:
We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Itô vs Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Itô. The main feature of this model is the absence of a linear instability at the transition point. The dynamical properties of the resulting noise-induced growth processes are studied and compared in the two interpretations and with a reference Ginzburg-Landau-type model. A detailed discussion of a different numerical algorithm valid for both interpretations is also presented.
Resumo:
We study the effects of time and space correlations of an external additive colored noise on the steady-state behavior of a time-dependent Ginzburg-Landau model. Simulations show the existence of nonequilibrium phase transitions controlled by both the correlation time and length of the noise. A Fokker-Planck equation and the steady probability density of the process are obtained by means of a theoretical approximation.