221 resultados para Intracanal medicaments
Resumo:
Background To analyse the extent and profile of outpatient regular dispensation of antipsychotics, both in combination and monotherapy, in the Barcelona Health Region (Spain), focusing on the use of clozapine and long-acting injections (LAI). Methods Antipsychotic drugs dispensed for people older than 18 and processed by the Catalan Health Service during 2007 were retrospectively reviewed. First and second generation antipsychotic drugs (FGA and SGA) from the Anatomical Therapeutic Chemical classification (ATC) code N05A (except lithium) were included. A patient selection algorithm was designed to identify prescriptions regularly dispensed. Variables included were age, gender, antipsychotic type, route of administration and number of packages dispensed. Results A total of 117,811 patients were given any antipsychotic, of whom 71,004 regularly received such drugs. Among the latter, 9,855 (13.9%) corresponded to an antipsychotic combination, 47,386 (66.7%) to monotherapy and 13,763 (19.4%) to unspecified combinations. Of the patients given antipsychotics in association, 58% were men. Olanzapine (37.1%) and oral risperidone (36.4%) were the most common dispensations. Analysis of the patients dispensed two antipsychotics (57.8%) revealed 198 different combinations, the most frequent being the association of FGA and SGA (62.0%). Clozapine was dispensed to 2.3% of patients. Of those who were receiving antipsychotics in combination, 6.6% were given clozapine, being clozapine plus amisulpride the most frequent association (22.8%). A total of 3.800 patients (5.4%) were given LAI antipsychotics, and 2.662 of these (70.1%) were in combination. Risperidone was the most widely used LAI. Conclusions The scant evidence available regarding the efficacy of combining different antipsychotics contrasts with the high number and variety of combinations prescribed to outpatients, as well as with the limited use of clozapine. Background To analyse the extent and profile of outpatient regular dispensation of antipsychotics, both in combination and monotherapy, in the Barcelona Health Region (Spain), focusing on the use of clozapine and long-acting injections (LAI). Methods Antipsychotic drugs dispensed for people older than 18 and processed by the Catalan Health Service during 2007 were retrospectively reviewed. First and second generation antipsychotic drugs (FGA and SGA) from the Anatomical Therapeutic Chemical classification (ATC) code N05A (except lithium) were included. A patient selection algorithm was designed to identify prescriptions regularly dispensed. Variables included were age, gender, antipsychotic type, route of administration and number of packages dispensed. Results A total of 117,811 patients were given any antipsychotic, of whom 71,004 regularly received such drugs. Among the latter, 9,855 (13.9%) corresponded to an antipsychotic combination, 47,386 (66.7%) to monotherapy and 13,763 (19.4%) to unspecified combinations. Of the patients given antipsychotics in association, 58% were men. Olanzapine (37.1%) and oral risperidone (36.4%) were the most common dispensations. Analysis of the patients dispensed two antipsychotics (57.8%) revealed 198 different combinations, the most frequent being the association of FGA and SGA (62.0%). Clozapine was dispensed to 2.3% of patients. Of those who were receiving antipsychotics in combination, 6.6% were given clozapine, being clozapine plus amisulpride the most frequent association (22.8%). A total of 3.800 patients (5.4%) were given LAI antipsychotics, and 2.662 of these (70.1%) were in combination. Risperidone was the most widely used LAI. Conclusions The scant evidence available regarding the efficacy of combining different antipsychotics contrasts with the high number and variety of combinations prescribed to outpatients, as well as with the limited use of clozapine.
Resumo:
BACKGROUND: The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). METHODS: Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. RESULTS: Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. CONCLUSIONS: Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX.
Resumo:
Horizontal gene transfer between commensal and pathogenic Neisseriae is the mechanism proposed to explain how pathogenic species acquire altered portions of the penA gene, which encodes penicillin binding protein 2. These changes resulted in a moderately penicillin-resistant phenotype in the meningococci, whose frequency of isolation in Spain increased at the end of the 1980s. Little has been published about the possibility of this gene transfer in nature or about its simulation in the laboratory. We designed a simple microcosm, formed by solid and liquid media, that partially mimics the upper human respiratory tract. In this microcosm, penicillin-resistant commensal strains and the fully susceptible meningococcus were co-cultivated. The efficiency of gene transfer between the strains depended on the phase of bacterial growth and the conditions of culture. Resistance of penicillin was acquired in different steps irrespective of the source of the DNA. The presence of DNase in the medium had no effect on gene transfer, but it was near zero when nicked DNA was used. Cell-to-cell contact or membrane blebs could explain these results. The analysis of sequences of the transpeptidase domain of PBP2 from transformants, and from donor and recipient strains demonstrated that the emergence of moderately resistant transformants was due to genetic exchange between the co-cultivated strains. Finally, mechanisms other than penA modification could be invoked to explain decreased susceptibility
Resumo:
Spontaneous mutants resistant to fluoroquinolones were obtained by exposing Serratia marcescens NIMA (wild-type strain) to increasing concentrations of ciprofloxacin both in liquid and on solid media. Frequencies of mutation ranged from 10-7 to 10-9. Active expulsion of antibiotic was explored as a possible mechanism of resistance in mutants as well as changes in topoisomerase target genes. The role of extrusion mechanisms in determining the emergence of multidrug-resistant bacteria was also examined. Mutants resistant to high concentrations of fluoroquinolones had a single mutation in their gyrA QRDR sequences, whereas the moderate resistance in the rest of mutants was due to extrusion of the drug
Resumo:
Spontaneous mutants resistant to fluoroquinolones were obtained by exposing Serratia marcescens NIMA (wild-type strain) to increasing concentrations of ciprofloxacin both in liquid and on solid media. Frequencies of mutation ranged from 10-7 to 10-9. Active expulsion of antibiotic was explored as a possible mechanism of resistance in mutants as well as changes in topoisomerase target genes. The role of extrusion mechanisms in determining the emergence of multidrug-resistant bacteria was also examined. Mutants resistant to high concentrations of fluoroquinolones had a single mutation in their gyrA QRDR sequences, whereas the moderate resistance in the rest of mutants was due to extrusion of the drug
Resumo:
The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent
Resumo:
The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent
Resumo:
Lamellarins are a large family of marine alkaloids with potential anticancer activity that have been isolated from diverse marine organisms, mainly ascidians and sponges. All lamellarins feature a 3,4-diarylpyrrole system. Pentacyclic lamellarins, whose polyheterocyclic system has a pyrrole core, are the most active compounds. Some of these alkaloids are potently cytotoxic to various tumor cell lines. To date, Lam-D and Lam-H have been identified as lead compounds for the inhibition of topoisomerase I and HIV-1 integrase, respectively nuclear enzymes which are over-expressed in deregulation disorders. Moreover,these compounds have been reported for their efficacy in treatment of multi-drug resistant (MDR) tumors cells without mediated drug efflux, as well as their immunomodulatory activity and selectivity towards melanoma cell lines. This article is an overview of recent literature on lamellarins, encompassing their isolation, recent synthetic strategies for their total synthesis, the preparation of their analogs, studies on their mechanisms of action, and their structure-activity relationships (SAR).
Resumo:
The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent
Resumo:
The outer membrane permeability of Serratia marcescens was studied by comparing porin-deficient mutants with their parental strains. Omp1-deficient strains were selected by moxalactam resistance, whereas mutants lacking the Omp2 porin were obtained by experimental infection with the SMP2 phage, whose primary receptor is the Omp2 porin. The role of porins was demonstrated in quinolone accumulation assays, where semi-quantitative differences in accumulation were observed. Permeability coefficients to cephaloridine of Omp1 mutants were determined and compared with those of the parental strain. The clinical isolates S. marcescens HCPR1 and 866 showed 30- to 200-fold reduced permeability coefficients when Omp1 porin was absent
Resumo:
Kahalalide compounds are peptides that are isolated from a Hawaiian herbivorous marine species of mollusc, Elysia rufescens, and its diet, the green alga Bryopsis sp. Kahalalide F and its synthetic analogues are the most promising compounds of the Kahalalide family because they show anti-tumoral activity. Linear solid-phase syntheses of Kahalalide F have been reported. Here we describe several new improved synthetic routes based on convergent approaches with distinct orthogonal protection schemes for the preparation of Kahaladide analogues. These strategies allow a better control and characterization of the intermediates because more reactions are performed in solution. Five derivatives of Kahalalide F were synthesized using several convergent approaches.
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
Empirical antibiotic therapy of community-acquired pneumonia (CAP) has been complicated by the worldwide emergence of penicillin resistance among Streptococcus pneumoniae. The impact of this resistance on the outcome of patients hospitalized for CAP, empirically treated with betalactams, has not been evaluated in a randomized study. We conducted a prospective, randomized trial to assess the efficacy of amoxicillin-clavulanate (2 g/200 mg/8 hr) and ceftriaxone (1 g/24 hr) in a cohort of patients hospitalized for moderate-to-severe CAP. Three-hundred seventy-eight patients were randomized to receive amoxicillin-clavulanate (184 patients) or ceftriaxone (194 patients). Efficacy was assessed on Day 2, after completion of therapy and at long term follow-up. There were no significant differences in outcomes between treatment groups, both in intention-to-treat and per-protocol analysis. Overall mortality was 10.3% for amoxicillin-clavulanate and 8.8% for ceftriaxone (NS). There were 116 evaluable patients with proven pneumococcal pneumonia. Rates of high-level penicillin resistance (MIC of penicillin ≥2 µg/mL) were similar in the two groups (8.2 and 10.2%). Clinical efficacy at the end of therapy was 90.6% for amoxicillin-clavulanate and 88.9% for ceftriaxone (95% C.I. of the difference: -9.3 to +12.7%). No differences in outcomes were attributable to differences in penicillin susceptibility of pneumococcal strains. Sequential i.v./oral amoxicillin-clavulanate and parenteral ceftriaxone were equally safe and effective for the empirical treatment of acute bacterial pneumonia, including penicillin and cephalosporin-resistant pneumococcal pneumonia. The use of appropriate betalactams in patients with penumococcal pneumonia and in the overall CAP population, is reliable at the current level of resistance