172 resultados para Economia matemática
Resumo:
L. S. Shapley, in his paper 'Cores of Convex Games', introduces Convex Measure Games, those that are induced by a convex function on R, acting over a measure on the coalitions. But in a note he states that if this function is a function of several variables, then convexity for the function does not imply convexity of the game or even superadditivity. We prove that if the function is directionally convex, the game is convex, and conversely, any convex game can be induced by a directionally convex function acting over measures on the coalitions, with as many measures as players
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
One of the main questions to solve when analysing geographically added information consists of the design of territorial units adjusted to the objectives of the study. This is related with the reduction of the effects of the Modificable Areal Unit Problem (MAUP). In this paper an optimisation model to solve regionalisation problems is proposed. This model seeks to reduce disadvantages found in previous works about automated regionalisation tools
Resumo:
[cat] En aquest treball, es realitza una nova estimació del VAB industrial espanyol a un nivell de desagregació territorial corresponent a les províncies (NUTSIII) i les Comunitats Autònomes (NUTS II). Per assolir aquest objectiu es planteja una nova metodologia d’estimació de les xifres històriques de VAB industrial regional. Front a les aproximacions tradicionals, basades en la utilització de fonts fiscals com a forma d’aproximar la capacitat productiva industrial, en aquest treball s’ofereix una estimació que també es basa en les rendes generades per la producció industrial de les regions. Amb aquest objectiu, es fa servir la metodologia proposada per Geary i Stark (2002) i les millores proposades per Crafts (2005). La utilització d’aquesta metodologia permet elaborar una nova estimació retrospectiva del VAB industrial de les regions espanyoles a diversos talls temporals corresponents al període 1860-1930.
Resumo:
A subclass of games with population monotonic allocation schemes is studied, namelygames with regular population monotonic allocation schemes (rpmas). We focus on theproperties of these games and we prove the coincidence between the core and both theDavis-Maschler bargaining set and the Mas-Colell bargaining set
Resumo:
Con este trabajo revisamos los Modelos de niveles de las tasas de intereses en Chile. Además de los Modelos de Nivel tradicionales por Chan, Karoly, Longstaff y Lijadoras (1992) en EE. UU, y Parisi (1998) en Chile, por el método de Probabilidad Maximun permitimos que la volatilidad condicional también incluya los procesos inesperados de la información (el modelo GARCH ) y también que la volatilidad sea la función del nivel de la tasa de intereses (modelo TVP-NIVELE) como en Brenner, Harjes y la Crona (1996). Para esto usamos producciones de mercado de bonos de reconocimiento, en cambio las producciones mensuales medias de subasta PDBC, y la ampliación del tamaño y la frecuencia de la muestra a 4 producciones semanales con términos(condiciones) diferentes a la madurez: 1 año, 5 años, 10 años y 15 años. Los resultados principales del estudio pueden ser resumidos en esto: la volatilidad de los cambios inesperados de las tarifas depende positivamente del nivel de las tarifas, sobre todo en el modelo de TVP-NIVEL. Obtenemos pruebas de reversión tacañas, tal que los incrementos en las tasas de intereses no eran independientes, contrariamente a lo obtenido por Brenner. en EE. UU. Los modelos de NIVELES no son capaces de ajustar apropiadamente la volatilidad en comparación con un modelo GARCH (1,1), y finalmente, el modelo de TVP-NIVEL no vence los resultados del modelo GARCH (1,1)
Resumo:
En este documento se ilustra de un modo práctico, el empleo de tres instrumentos que permiten al actuario definir grupos arancelarios y estimar premios de riesgo en el proceso que tasa la clase para el seguro de no vida. El primero es el análisis de segmentación (CHAID y XAID) usado en primer lugar en 1997 por UNESPA en su cartera común de coches. El segundo es un proceso de selección gradual con el modelo de regresión a base de distancia. Y el tercero es un proceso con el modelo conocido y generalizado de regresión linear, que representa la técnica más moderna en la bibliografía actuarial. De estos últimos, si combinamos funciones de eslabón diferentes y distribuciones de error, podemos obtener el aditivo clásico y modelos multiplicativos
Resumo:
L. S. Shapley, in his paper 'Cores of Convex Games', introduces Convex Measure Games, those that are induced by a convex function on R, acting over a measure on the coalitions. But in a note he states that if this function is a function of several variables, then convexity for the function does not imply convexity of the game or even superadditivity. We prove that if the function is directionally convex, the game is convex, and conversely, any convex game can be induced by a directionally convex function acting over measures on the coalitions, with as many measures as players
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
The set of optimal matchings in the assignment matrix allows to define a reflexive and symmetric binary relation on each side of the market, the equal-partner binary relation. The number of equivalence classes of the transitive closure of the equal-partner binary relation determines the dimension of the core of the assignment game. This result provides an easy procedure to determine the dimension of the core directly from the entries of the assignment matrix and shows that the dimension of the core is not as much determined by the number of optimal matchings as by their relative position in the assignment matrix.
Resumo:
In this paper we analyze the time of ruin in a risk process with the interclaim times being Erlang(n) distributed and a constant dividend barrier. We obtain an integro-differential equation for the Laplace Transform of the time of ruin. Explicit solutions for the moments of the time of ruin are presented when the individual claim amounts have a distribution with rational Laplace transform. Finally, some numerical results and a compare son with the classical risk model, with interclaim times following an exponential distribution, are given.
Resumo:
This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.
Resumo:
Un juego de asignación se define por una matriz A; donde cada fila representa un comprador y cada columna un vendedor. Si el comprador i se empareja a un vendedor j; el mercado produce aij unidades de utilidad. Estudiamos los juegos de asignación de Monge, es decir, aquellos juegos bilaterales de asignación en los cuales la matriz satisface la propiedad de Monge. Estas matrices pueden caracterizarse por el hecho de que en cualquier submatriz 2x2 un emparejamiento óptimo está situado en la diagonal principal. Para mercados cuadrados, describimos sus núcleos utilizando sólo la parte central tridiagonal de elementos de la matriz. Obtenemos una fórmula cerrada para el reparto óptimo de los compradores dentro del núcleo y para el reparto óptimo de los vendedores dentro del núcleo. Analizamos también los mercados no cuadrados reduciéndolos a matrices cuadradas apropiadas.
Resumo:
[spa] En este artículo hallamos fórmulas para el nucleolo de juegos de asignación arbitrarios con dos compradores y dos vendedores. Se analizan cinco casos distintos, dependiendo de las entradas en la matriz de asignación. Los resultados se extienden a los casos de juegos de asignación de tipo 2 x m o m x 2.