111 resultados para uncertainty estimation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An accurate mass formula at finite temperature has been used to obtain a more precise estimation of temperature effects on fission barriers calculated within the liquid drop model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical theory of signal detection and the estimation of its parameters are reviewed and applied to the case of detection of the gravitational-wave signal from a coalescing binary by a laser interferometer. The correlation integral and the covariance matrix for all possible static configurations are investigated numerically. Approximate analytic formulas are derived for the case of narrow band sensitivity configuration of the detector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amino acid composition of the protein from three strains of rat (Wistar, Zucker lean and Zucker obese), subjected to reference and high-fat diets has been used to determine the mean empirical formula, molecular weight and N content of whole-rat protein. The combined whole protein of the rat was uniform for the six experimental groups, containing an estimate of 17.3% N and a mean aminoacyl residue molecular weight of 103.7. This suggests that the appropriate protein factor for the calculation of rat protein from its N content should be 5.77 instead of the classical 6.25. In addition, an estimate of the size of the non-protein N mass in the whole rat gave a figure in the range of 5.5 % of all N. The combination of the two calculations gives a protein factor of 5.5 for the conversion of total N into rat protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the determinants of political myopia in a rational model of electoral accountability where the key elements are informational frictions and uncertainty. We build aframework where political ability is ex-ante unknown and policy choices are not perfectlyobservable. On the one hand, elections improve accountability and allow to keep well-performing incumbents. On the other, politicians invest too little in costly policies withfuture returns in an attempt to signal high ability and increase their reelection probability.Contrary to the conventional wisdom, uncertainty reduces political myopia and may, undersome conditions, increase social welfare. We use the model to study how political rewardscan be set so as to maximise social welfare and the desirability of imposing a one-term limitto governments. The predictions of our theory are consistent with a number of stylised factsand with a new empirical observation documented in this paper: aggregate uncertainty, measured by economic volatility, is associated to better fiscal discipline in a panel of 20 OECDcountries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal anomalies, like Robertsonian and reciprocal translocations represent a big problem in cattle breeding as their presence induces, in the carrier subjects, a well documented fertility reduction. In cattle reciprocal translocations (RCPs, a chromosome abnormality caused by an exchange of material between nonhomologous chromosomes) are considered rare as to date only 19 reciprocal translocations have been described. In cattle it is common knowledge that the Robertsonian translocations represent the most common cytogenetic anomalies, and this is probably due to the existence of the endemic 1;29 Robertsonian translocation. However, these considerations are based on data obtained using techniques that are unable to identify all reciprocal translocations and thus their frequency is clearly underestimated. The purpose of this work is to provide a first realistic estimate of the impact of RCPs in the cattle population studied, trying to eliminate the factors which have caused an underestimation of their frequency so far. We performed this work using a mathematical as well as a simulation approach and, as biological data, we considered the cytogenetic results obtained in the last 15 years. The results obtained show that only 16% of reciprocal translocations can be detected using simple Giemsa techniques and consequently they could be present in no less than 0,14% of cattle subjects, a frequency five times higher than that shown by de novo Robertsonian translocations. This data is useful to open a debate about the need to introduce a more efficient method to identify RCP in cattle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image registration has been proposed as an automatic method for recovering cardiac displacement fields from Tagged Magnetic Resonance Imaging (tMRI) sequences. Initially performed as a set of pairwise registrations, these techniques have evolved to the use of 3D+t deformation models, requiring metrics of joint image alignment (JA). However, only linear combinations of cost functions defined with respect to the first frame have been used. In this paper, we have applied k-Nearest Neighbors Graphs (kNNG) estimators of the -entropy (H ) to measure the joint similarity between frames, and to combine the information provided by different cardiac views in an unified metric. Experiments performed on six subjects showed a significantly higher accuracy (p < 0.05) with respect to a standard pairwise alignment (PA) approach in terms of mean positional error and variance with respect to manually placed landmarks. The developed method was used to study strains in patients with myocardial infarction, showing a consistency between strain, infarction location, and coronary occlusion. This paper also presentsan interesting clinical application of graph-based metric estimators, showing their value for solving practical problems found in medical imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily precipitation is recorded as the total amount of water collected by a rain-gauge in 24h. Events are modelled as a Poisson process and the 24h precipitation by a Generalized Pareto Distribution (GPD) of excesses. Hazard assessment is complete when estimates of the Poisson rate and the distribution parameters, together with a measure of their uncertainty, are obtained. The shape parameter of the GPD determines the support of the variable: Weibull domain of attraction (DA) corresponds to finite support variables, as should be for natural phenomena. However, Fréchet DA has been reported for daily precipitation, which implies an infinite support and a heavy-tailed distribution. We use the fact that a log-scale is better suited to the type of variable analyzed to overcome this inconsistency, thus showing that using the appropriate natural scale can be extremely important for proper hazard assessment. The approach is illustrated with precipitation data from the Eastern coast of the Iberian Peninsula affected by severe convective precipitation. The estimation is carried out by using Bayesian techniques

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the goodness of the Gaussian assumption when designing second-order blind estimationmethods in the context of digital communications. The low- andhigh-signal-to-noise ratio (SNR) asymptotic performance of the maximum likelihood estimator—derived assuming Gaussiantransmitted symbols—is compared with the performance of the optimal second-order estimator, which exploits the actualdistribution of the discrete constellation. The asymptotic study concludes that the Gaussian assumption leads to the optimalsecond-order solution if the SNR is very low or if the symbols belong to a multilevel constellation such as quadrature-amplitudemodulation (QAM) or amplitude-phase-shift keying (APSK). On the other hand, the Gaussian assumption can yield importantlosses at high SNR if the transmitted symbols are drawn from a constant modulus constellation such as phase-shift keying (PSK)or continuous-phase modulations (CPM). These conclusions are illustrated for the problem of direction-of-arrival (DOA) estimation of multiple digitally-modulated signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. First, the asymptotic covariances of the training-only, semi-blind conditional maximum likelihood (CML) and semi-blind Gaussian maximum likelihood (GML) channelestimators are derived. Then, these formulas are further simplified assuming randomized spreading and training sequences under the approximation of high spreading factors and high number of codes. The results provide a useful tool to describe the performance of the channel estimators as a function of basicsystem parameters such as number of codes, spreading factors, or traffic to training power ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this correspondence, we propose applying the hiddenMarkov models (HMM) theory to the problem of blind channel estimationand data detection. The Baum–Welch (BW) algorithm, which is able toestimate all the parameters of the model, is enriched by introducingsome linear constraints emerging from a linear FIR hypothesis on thechannel. Additionally, a version of the algorithm that is suitable for timevaryingchannels is also presented. Performance is analyzed in a GSMenvironment using standard test channels and is found to be close to thatobtained with a nonblind receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to introduce a fourth-order cost function of the displaced frame difference (DFD) capable of estimatingmotion even for small regions or blocks. Using higher than second-orderstatistics is appropriate in case the image sequence is severely corruptedby additive Gaussian noise. Some results are presented and compared to those obtained from the mean kurtosis and the mean square error of the DFD.