79 resultados para photo-thermal deformation
Resumo:
This paper presents a new numerical program able to model syntectonic sedimentation. The new model combines a discrete element model of the tectonic deformation of a sedimentary cover and a process-based model of sedimentation in a single framework. The integration of these two methods allows us to include the simulation of both sedimentation and deformation processes in a single and more effective model. The paper describes briefly the antecedents of the program, Simsafadim-Clastic and a discrete element model, in order to introduce the methodology used to merge both programs to create the new code. To illustrate the operation and application of the program, analysis of the evolution of syntectonic geometries in an extensional environment and also associated with thrust fault propagation is undertaken. Using the new code, much more complex and realistic depositional structures can be simulated together with a more complex analysis of the evolution of the deformation within the sedimentary cover, which is seen to be affected by the presence of the new syntectonic sediments.
Resumo:
We introduce a new notion for the deformation of Gabor systems. Such deformations are in general nonlinear and, in particular, include the standard jitter error and linear deformations of phase space. With this new notion we prove a strong deformation result for Gabor frames and Gabor Riesz sequences that covers the known perturbation and deformation results. Our proof of the deformation theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It is in the style of Beurling's characterization of sets of sampling for bandlimited functions and extends significantly the known characterization of Gabor frames 'without inequalities' from lattices to non-uniform sets.
Resumo:
Context. The interaction of microquasar jets with their environment can produce non-thermal radiation as in the case of extragalactic outflows impacting on their surroundings. Significant observational evidence of jet/medium interaction in galactic microquasars has been collected in the past few years, although little theoretical work has been done regarding the resulting non-thermal emission. Aims. In this work, we investigate the non-thermal emission produced in the interaction between microquasar jets and their environment, and the physical conditions for its production. Methods. We developed an analytical model based on those successfully applied to extragalactic sources. The jet is taken to be a supersonic and mildly relativistic hydrodynamical outflow. We focus on the jet/shocked medium structure in its adiabatic phase, and assume that it grows in a self-similar way. We calculate the fluxes and spectra of the radiation produced via synchrotron, inverse Compton, and relativistic bremsstrahlung processes by electrons accelerated in strong shocks. A hydrodynamical simulation is also performed to investigate further the jet interaction with the environment and check the physical parameters used in the analytical model. Results. For reasonable values of the magnetic field, and using typical values of the external matter density, the non-thermal particles could produce significant amounts of radiation at different wavelengths, although they do not cool primarily radiatively, but by adiabatic losses. The physical conditions of the analytical jet/medium interaction model are consistent with those found in the hydrodynamical simulation. Conclusions. Microquasar jet termination regions could be detectable at radio wavelengths for current instruments sensitive to ~arcminute scales. At X-ray energies, the expected luminosities are moderate, although the emitter is more compact than the radio one. The source may be detectable by XMM-Newton or Chandra, with 1-10 arcsec of angular resolution. The radiation at gamma-ray energies may be within the detection limits of the next generation of satellite and ground-based instruments.
Resumo:
The structural relaxation of pure amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) materials, that occurs during thermal annealing experiments, has been analyzed by Raman spectroscopy and differential scanning calorimetry. Unlike a-Si, the heat evolved from a-Si:H cannot be explained by relaxation of the Si-Si network strain but it reveals a derelaxation of the bond angle strain. Since the state of relaxation after annealing is very similar for pure and hydrogenated materials, our results give strong experimental support to the predicted configurational gap between a-Si and crystalline silicon