81 resultados para fast transient kinetics
Resumo:
Two vegetable wastes, cork bark and grape stalks, were investigated for the removal of methylene blue from aqueous solution. The effects of contact time, dye concentration, pH, and temperature on sorption were studied relative to adsorption on a commercially-activated carbon. The highest adsorption yield was obtained within the pH range 5 to 10 for grape stalks and 7 to 10 for cork bark. The sorption kinetics of dye onto activated carbon and grape stalks was very fast. Kinetics data were fitted to the pseudo-first and second order kinetic equations, and the values of the pseudo-second-order initial rate constants were found to be 1.69 mg g-1 min-1 for activated carbon, 2.24 mg g-1 min-1 for grape stalks, and 0.90 mg g-1 min-1 for cork bark. Langmuir maximum sorption capacities for activated carbon, grape stalks, and cork bark for methylene blue estimated by the Orthogonal Distance Regression method (ODR) were 157.5 mg g-1, 105.6 mg g-1, and 30.52 mg g-1, respectively. FTIR spectra indicated that carboxylic groups and lignin play a significant role in the sorption of methylene blue. Electrostatic forces, n-p interactions, cation-p, and p-p stacking interactions contribute to methylene blue sorption onto grape stalks and cork bark. Grape stalks can be considered an efficient biosorbent and as a viable alternative to activated carbon and ion-exchange resins for the removal of methylene blue
Resumo:
The disintegration of recovered paper is the first operation in the preparation of recycled pulp. It is known that the defibering process follows a first order kinetics from which it is possible to obtain the disintegration kinetic constant (KD) by means of different ways. The disintegration constant can be obtained from the Somerville index results (%lsv and from the dissipated energy per volume unit (Ss). The %slv is related to the quantity of non-defibrated paper, as a measure of the non-disintegrated fiber residual (percentage of flakes), which is expressed in disintegration time units. In this work, disintegration kinetics from recycled coated paper has been evaluated, working at 20 revise rotor speed and for different fiber consistency (6, 8, 10, 12 and 14%). The results showed that the values of experimental disintegration kinetic constant, Ko, through the analysis of Somerville index, as function of time. Increased, the disintegration time was drastically reduced. The calculation of the disintegration kinetic constant (modelled Ko), extracted from the Rayleigh’s dissipation function, showed a good correlation with the experimental values using the evolution of the Somerville index or with the dissipated energy
Resumo:
Amyloid aggregation is linked to a large number of human disorders, from neurodegenerative diseases as Alzheimer"s disease (AD) or spongiform encephalopathies to non-neuropathic localized diseases as type II diabetes and cataracts. Because the formation of insoluble inclusion bodies (IBs) during recombinant protein production in bacteria has been recently shown to share mechanistic features with amyloid self-assembly, bacteria have emerged as a tool to study amyloid aggregation. Herein we present a fast, simple, inexpensive and quantitative method for the screening of potential anti-aggregating drugs. This method is based on monitoring the changes in the binding of thioflavin-S to intracellular IBs in intact Eschericchia coli cells in the presence of small chemical compounds. This in vivo technique fairly recapitulates previous in vitro data. Here we mainly use the Alzheimer"s related beta-amyloid peptide as a model system, but the technique can be easily implemented for screening inhibitors relevant for other conformational diseases simply by changing the recombinant amyloid protein target. Indeed, we show that this methodology can be also applied to the evaluation of inhibitors of the aggregation of tau protein, another amyloidogenic protein with a key role in AD.
Resumo:
Amyloid aggregation is linked to a large number of human disorders, from neurodegenerative diseases as Alzheimer"s disease (AD) or spongiform encephalopathies to non-neuropathic localized diseases as type II diabetes and cataracts. Because the formation of insoluble inclusion bodies (IBs) during recombinant protein production in bacteria has been recently shown to share mechanistic features with amyloid self-assembly, bacteria have emerged as a tool to study amyloid aggregation. Herein we present a fast, simple, inexpensive and quantitative method for the screening of potential anti-aggregating drugs. This method is based on monitoring the changes in the binding of thioflavin-S to intracellular IBs in intact Eschericchia coli cells in the presence of small chemical compounds. This in vivo technique fairly recapitulates previous in vitro data. Here we mainly use the Alzheimer"s related beta-amyloid peptide as a model system, but the technique can be easily implemented for screening inhibitors relevant for other conformational diseases simply by changing the recombinant amyloid protein target. Indeed, we show that this methodology can be also applied to the evaluation of inhibitors of the aggregation of tau protein, another amyloidogenic protein with a key role in AD.
Resumo:
BACKGROUND: The Cancer Fast-track Programme's aim was to reduce the time that elapsed between well-founded suspicion of breast, colorectal and lung cancer and the start of initial treatment in Catalonia (Spain). We sought to analyse its implementation and overall effectiveness. METHODS: A quantitative analysis of the programme was performed using data generated by the hospitals on the basis of seven fast-track monitoring indicators for the period 2006-2009. In addition, we conducted a qualitative study, based on 83 semistructured interviews with primary and specialised health professionals and health administrators, to obtain their perception of the programme's implementation. RESULTS: About half of all new patients with breast, lung or colorectal cancer were diagnosed via the fast track, though the cancer detection rate declined across the period. Mean time from detection of suspected cancer in primary care to start of initial treatment was 32 days for breast, 30 for colorectal and 37 for lung cancer (2009). Professionals associated with the implementation of the programme showed that general practitioners faced with suspicion of cancer had changed their conduct with the aim of preventing lags. Furthermore, hospitals were found to have pursued three specific implementation strategies (top-down, consensus-based and participatory), which made for the cohesion and sustainability of the circuits. CONCLUSION: The programme has contributed to speeding up diagnostic assessment and treatment of patients with suspicion of cancer, and to clarifying the patient pathway between primary and specialised care.