109 resultados para diffraction efficiency spectrum
Resumo:
We obtain the photon spectrum induced by a cosmic background of unstable neutrinos. We study the spectrum in a variety of cosmological scenarios and also we allow for the neutrinos having a momentum distribution (only a critical matter-dominated universe and neutrinos at rest have been considered until now). Our results can be helpful when extracting bounds on neutrino electric and magnetic moments from cosmic photon background observations.
Resumo:
Background: Limited data on a short series of patients suggest that lymphocytic enteritis (classically considered as latent coeliac disease) may produce symptoms of malabsorption, although the true prevalence of this situation is unknown. Serological markers of coeliac disease are of little diagnostic value in identifying these patients. Aims: To evaluate the usefulness of human leucocyte antigen-DQ2 genotyping followed by duodenal biopsy for the detection of gluten-sensitive enteropathy in first-degree relatives of patients with coeliac disease and to assess the clinical relevance of lymphocytic enteritis diagnosed with this screening strategy. Patients and methods: 221 first-degree relatives of 82 DQ2+ patients with coeliac disease were consecutively included. Duodenal biopsy (for histological examination and tissue transglutaminase antibody assay in culture supernatant) was carried out on all DQ2+ relatives. Clinical features, biochemical parameters and bone mineral density were recorded. Results: 130 relatives (58.8%) were DQ2+, showing the following histological stages: 64 (49.2%) Marsh 0; 32 (24.6%) Marsh I; 1 (0.8%) Marsh II; 13 (10.0%) Marsh III; 15.4% refused the biopsy. 49 relatives showed gluten sensitive enteropathy, 46 with histological abnormalities and 3 with Marsh 0 but positive tissue transglutaminase antibody in culture supernatant. Only 17 of 221 relatives had positive serological markers. Differences in the diagnostic yield between the proposed strategy and serology were significant (22.2% v 7.2%, p<0.001). Relatives with Marsh I and Marsh II¿III were more often symptomatic (56.3% and 53.8%, respectively) than relatives with normal mucosa (21.1%; p=0.002). Marsh I relatives had more severe abdominal pain (p=0.006), severe distension (p=0.047) and anaemia (p=0.038) than those with Marsh 0. The prevalence of abnormal bone mineral density was similar in relatives with Marsh I (37%) and Marsh III (44.4%). Conclusions: The high number of symptomatic patients with lymphocytic enteritis (Marsh I) supports the need for a strategy based on human leucocyte antigen-DQ2 genotyping followed by duodenal biopsy in relatives of patients with coeliac disease and modifies the current concept that villous atrophy is required to prescribe a gluten-free diet.
Resumo:
Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.
Resumo:
Summary. The present study reports the effects of referential communication training in individuals formally diagnosed with autism spectrum disorder (ASD). Participants were 20 children with ASD (M age = 14.3 yr., SD = 4.2; 6 girls, 14 boys) in the role of speakers and 20 control children, who acted as listeners. They were all enrolled in mainstream compulsory education. Inclusion/exclusion criteria were defined according to the clinical diagnosis of ASD, the presence or absence of additional or associated disability, previous training in referential communication, and any drug treatment. Speakers were randomly assigned to one of two groups (trained vs untrained). Linguistic age, cognitive level, and autistic symptoms were analyzed, respectively, with the Peabody Picture Vocabulary Test (PPVT), the Wechsler Intelligence Scale (WISCR or WAISIII), and the Autistic Behavior Checklist (ABC). Communicative abilities were analyzed through two indexes related to message complexity and self-regulation. The trained group was trained in referential communication tasks (task analysis, role taking, and task evaluation), while the untrained group took part in a communicative game but without any specific communicative training. The results showed that the complexity of emitted messages had improved statistically significantly in the trained group as an effect of training. Ecological referential communication is shown to be an appropriate paradigm for studying the communicative process and its products and could be used to develop and implement a training program focused on those skills in which individuals with ASD are most deficient.
Resumo:
Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.
Resumo:
In this article the main possibilities of single crystal and powder diffraction analysis using conventional laboratory x-ray sources are introduced. Several examples of applications with different solid samples and in different fields of applications are shown illustrating the multidisciplinary capabilities of both techniques.
Resumo:
Structural and optical characterization of copper phthalocyanine thin film thermally deposited at different substrate temperatures was the aim of this work. The morphology of the films shows strong dependence on temperature, as can be observed by atomic force microscopy and x-ray diffraction spectroscopy, specifically in the grain size and features of the grains. The increase in the crystal phase with substrate temperature is shown by x-ray diffractometry. Optical absorption coefficient measured by photothermal deflection spectroscopy and optical transmittance reveal a weak dependence on the substrate temperature. Besides, the electro-optical response measured by the external quantum efficiency of Schottky ITO/CuPc/Al diodes shows an optimized response for samples deposited at a substrate temperature of 60 °C, in correspondence to the I-V diode characteristics.
Resumo:
A dual model with a nonlinear proton Regge trajectory in the missing mass (M_X^2) channel is constructed. A background based on a direct-channel exotic trajectory, developed and applied earlier for the inclusive electron-proton cross section description in the nucleon resonance region, is used. The parameters of the model are determined from the extrapolations to earlier experiments. Predictions for the low-mass (2 < M_X^2 < 8GeV^2) diffraction dissociation cross sections at the LHC energies are given.
Resumo:
We analyze the process of informational exchange through complex networks by measuring network efficiencies. Aiming to study nonclustered systems, we propose a modification of this measure on the local level. We apply this method to an extension of the class of small worlds that includes declustered networks and show that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is also applied to characterize weighted networks. In particular we examine the properties of underground transportation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.
Resumo:
Cognitive radio is a wireless technology aimed at improvingthe efficiency use of the radio-electric spectrum, thus facilitating a reductionin the load on the free frequency bands. Cognitive radio networkscan scan the spectrum and adapt their parameters to operate in the unoccupiedbands. To avoid interfering with licensed users operating on a givenchannel, the networks need to be highly sensitive, which is achieved byusing cooperative sensing methods. Current cooperative sensing methodsare not robust enough against occasional or continuous attacks. This articleoutlines a Group Fusion method that takes into account the behavior ofusers over the short and long term. On fusing the data, the method is basedon giving more weight to user groups that are more unanimous in their decisions.Simulations have been performed in a dynamic environment withinterferences. Results prove that when attackers are present (both reiterativeor sporadic), the proposed Group Fusion method has superior sensingcapability than other methods.
Resumo:
Cognitive radio networks (CRN) sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. The detection capability of a radio system can be enhanced if the sensing process is performed jointly by a group of nodes so that the effects of wireless fading and shadowing can be minimized. However, taking a collaborative approach poses new security threats to the system as nodes can report false sensing data to force a wrong decision. Providing security to the sensing process is also complex, as it usually involves introducing limitations to the CRN applications. The most common limitation is the need for a static trusted node that is able to authenticate and merge the reports of all CRN nodes. This paper overcomes this limitation by presenting a protocol that is suitable for fully distributed scenarios, where there is no static trusted node.
Resumo:
Spectrum scarcity demands thinking new ways tomanage the distribution of radio frequency bands so that its use is more effective. The emerging technology that can enable this paradigm shift is the cognitive radio. Different models fororganizing and managing cognitive radios have emerged, all with specific strategic purposes. In this article we review the allocation spectrum patterns of cognitive radio networks andanalyse which are the common basis of each model.We expose the vulnerabilities and open challenges that still threaten the adoptionand exploitation of cognitive radios for open civil networks.
Resumo:
The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.
Resumo:
The aim of this study is to analyze how European integration and, especially, changes in ownership, has affected banking efficiency in Central and Eastern European countries which have recently experimented this process more intensely. Using a stochastic frontier approach (SFA) applied to panel data, we have estimated bank efficiency levels in a sample of 189 banks from 12 countries during the period 2000 to 2008 and we have analyzed the influence of some bank characteristics on these efficiency levels. The results show that European integration has significantly improved the cost efficiency of banks in these countries but profit efficiency has significantly decreased. We have found very small differences between different ownership types and only a very small impact of foreign ownership on cost efficiency, showing that the entry of foreign ownership is not enough to explain the significant variations in banking efficiency after the accession.
Resumo:
Focused ion beam milling is a processing technology which allows flexible direct writing of nanometer scale features efficiently substituting electron beam lithography. No mask need results in ability for patterns writing even on fragile micromechanical devices. In this work we studied the abilities of the tool for fabrication of diffraction grating couplers in silicon nitride waveguides. The gratings were fabricated on a chip with extra fragile cantilevers of sub micron thickness. Optical characterization of the couplers was done using excitation of the waveguides in visible range by focused Gaussian beams of different waist sizes. Influence of Ga+ implantation on the device performance was studied.