92 resultados para design rules
Resumo:
One of the main questions to solve when analysing geographically added information consists of the design of territorial units adjusted to the objectives of the study. This is related with the reduction of the effects of the Modificable Areal Unit Problem (MAUP). In this paper an optimisation model to solve regionalisation problems is proposed. This model seeks to reduce disadvantages found in previous works about automated regionalisation tools
Resumo:
InAlAs/InGaAs/InP based high electron mobility transistor devices have been structurally and electrically characterized, using transmission electron microscopy and Raman spectroscopy and measuring Hall mobilities. The InGaAs lattice matched channels, with an In molar fraction of 53%, grown at temperatures lower than 530¿°C exhibit alloy decomposition driving an anisotropic InGaAs surface roughness oriented along [1math0]. Conversely, lattice mismatched channels with an In molar fraction of 75% do not present this lateral decomposition but a strain induced roughness, with higher strength as the channel growth temperature increases beyond 490¿°C. In both cases the presence of the roughness implies low and anisotropic Hall mobilities of the two dimensional electron gas.
Resumo:
[cat] El 20 de febrer de 2006 es va aprovar el Reglament núm. 318/2006 del Consell que reforma l'Organització Comuna de Mercats del sucre. L'article analitza els canvis introduïts en el nou règim europeu del sucre i valora la seva adequació a les normes i demandes internacionals de liberalització del comerç agrícola. Es conclou que la reforma ha estat el mínim necessari per fer front als reptes internacionals: la recent resolució de l'Òrgan de Solució de Diferències de l'Organització Mundial del Comerç i les demandes de liberalització plantejades en el marc de la Ronda de Doha.
Resumo:
One of the main questions to solve when analysing geographically added information consists of the design of territorial units adjusted to the objectives of the study. This is related with the reduction of the effects of the Modificable Areal Unit Problem (MAUP). In this paper an optimisation model to solve regionalisation problems is proposed. This model seeks to reduce disadvantages found in previous works about automated regionalisation tools
Resumo:
Using the once and thrice energy-weighted moments of the random-phase-approximation strength function, we have derived compact expressions for the average energy of surface collective oscillations of clusters and spheres of metal atoms. The L=0 volume mode has also been studied. We have carried out quantal and semiclassical calculations for Na and Ag systems in the spherical-jellium approximation. We present a rather thorough discussion of surface diffuseness and quantal size effects on the resonance energies.
Resumo:
We design optimal band pass filters for electrons in semiconductor heterostructures, under a uniform applied electric field. The inner cells are chosen to provide a desired transmission window. The outer cells are then designed to transform purely incoming or outgoing waves into Bloch states of the inner cells. The transfer matrix is interpreted as a conformal mapping in the complex plane, which allows us to write constraints on the outer cell parameters, from which physically useful values can be obtained.
Resumo:
The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two different realistic potentials, these sum rules are studied for Greens functions that are derived self-consistently within the T matrix approximation at finite temperature.
Resumo:
The neutron and proton single-particle spectral functions in asymmetric nuclear matter fulfill energy-weighted sum rules. The validity of these sum rules within the self-consistent Green's function approach is investigated. The various contributions to these sum rules and their convergence as a function of energy provide information about correlations induced by the realistic interaction between the nucleons. The study of the sum rules in asymmetric nuclear matter exhibits the isospin dependence of the nucleon-nucleon correlations.
Resumo:
We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow.
Resumo:
We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific models of the kaon and pion self-energy. The in-medium spectral densities of the K and (K) over bar mesons are obtained from a chiral unitary approach in coupled channels that incorporates the S and P waves of the kaon-nucleon interaction. The pion self-energy is determined from the P-wave coupling to particle-hole and Delta-hole excitations, modified by short-range correlations. The sum rules for the lower-energy weights are fulfilled satisfactorily and reflect the contributions from the different quasiparticle and collective modes of the meson spectral function. We discuss the sensitivity of the sum rules to the distribution of spectral strength and their usefulness as quality tests of model calculations.
Resumo:
The possibility of local elastic instabilities is considered in a first¿order structural phase transition, typically a thermoelastic martensitic transformation, with associated interfacial and volumic strain energy. They appear, for instance, as the result of shape change accommodation by simultaneous growth of different crystallographic variants. The treatment is phenomenological and deals with growth in both thermoelastic equilibrium and in nonequilibrium conditions produced by the elastic instability. Scaling of the transformed fraction curves against temperature is predicted only in the case of purely thermoelastic growth. The role of the transformation latent heat on the relaxation kinetics is also considered, and it is shown that it tends to increase the characteristic relaxation times as adiabatic conditions are approached, by keeping the system closer to a constant temperature. The analysis also reveals that the energy dissipated in the relaxation process has a double origin: release of elastic energy Wi and entropy production Si. The latter is shown to depend on both temperature rate and thermal conduction in the system.
Resumo:
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image processing. This paper provides the theoretical background and technical information for performing the experiment. The proposed activity requires students able to develop a wide range of skills since they are expected to deal with optical components, including spatial light modulators, and develop scripts to perform some calculations.
Resumo:
A method of making a multiple matched filter which allows the recognition of different characters in successive planes in simple conditions is proposed. The generation of the filter is based on recording on the same plate the Fourier transforms of the different patterns to be recognized, each of which is affected by different spherical phase factors because the patterns have been placed at different distances from the lens. This is proved by means of experiments with a triple filter which allows satisfactory recognition of three characters.
Resumo:
We describe the design, calibration, and performance of surface forces apparatus with the capability of illumination of the contact interface for spectroscopic investigation using optical techniques. The apparatus can be placed in the path of a Nd-YAG laser for studies of the linear response or the second harmonic and sum-frequency generation from a material confined between the two surfaces. In addition to the standard fringes of equal chromatic order technique, which we have digitized for accurate and fast analysis, the distance of separation can be measured with a fiber-optic interferometer during spectroscopic measurements (2 Å resolution and 10 ms response time). The sample approach is accomplished through application of a motor drive, piezoelectric actuator, or electromagnetic lever deflection for variable degrees of range, sensitivity, and response time. To demonstrate the operation of the instrument, the stepwise expulsion of discrete layers of octamethylcyclotetrasiloxane from the contact is shown. Lateral forces may also be studied by using piezoelectric bimorphs to induce and direct the motion of one surface.