93 resultados para density function theory
Resumo:
The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.
Resumo:
The electronic structure of the molecular solid Ni(tmdt)2, the only well characterized neutral molecular metal to date, has been studied by means of first-principles density functional calculations. It is shown that these calculations correctly describe the metallic vs semiconducting behavior of molecular conductors of this type. The origin of the band overlap leading to the metallic character and the associated Fermi surfaces has been studied.
Resumo:
The electronic structure and properties of cerium oxides (CeO2 and Ce2O3) have been studied in the framework of the LDA+U and GGA(PW91)+U implementations of density functional theory. The dependence of selected observables of these materials on the effective U parameter has been investigated in detail. The examined properties include lattice constants, bulk moduli, density of states, and formation energies of CeO2 and Ce2O3. For CeO2, the LDA+U results are in better agreement with experiment than the GGA+U results whereas for the computationally more demanding Ce2O3 both approaches give comparable accuracy. Furthermore, as expected, Ce2O3 is much more sensitive to the choice of the U value. Generally, the PW91 functional provides an optimal agreement with experiment at lower U energies than LDA does. In order to achieve a balanced description of both kinds of materials, and also of nonstoichiometric CeO2¿x phases, an appropriate choice of U is suggested for LDA+U and GGA+U schemes. Nevertheless, an optimum value appears to be property dependent, especially for Ce2O3. Optimum U values are found to be, in general, larger than values determined previously in a self-consistent way.
Resumo:
A theoretical density-functional study has been carried out to analyze the exchange coupling in the chains of CuGeO3 using discrete models. The results show a good agreement with the experimental exchange coupling constant (J) together with a strong dependence of J with the Cu-O-Cu angle. The calculation of the J values for a distorted model indicates a larger degree of dimerization than those reported previously.
Resumo:
A discussion on the expression proposed in [1]–[3]for deconvolving the wideband density function is presented. Weprove here that such an expression reduces to be proportionalto the wideband correlation receiver output, or continuous wavelettransform of the received signal with respect to the transmittedone. Moreover, we show that the same result has been implicitlyassumed in [1], when the deconvolution equation is derived. Westress the fact that the analyzed approach is just the orthogonalprojection of the density function onto the image of the wavelettransform with respect to the transmitted signal. Consequently,the approach can be considered a good representation of thedensity function only under the prior knowledge that the densityfunction belongs to such a subspace. The choice of the transmittedsignal is thus crucial to this approach.
Resumo:
We have analyzed the relative energy of nonmagnetic and magnetic low-lying electronic states of Ni atoms adsorbed on regular and defective sites of the MgO(001) surface. To this end cluster and periodic surface models are used within density functional theory. For Ni atoms adsorbed on oxygen vacancies at low coverage, the interaction energy between the metal and the support is much larger than on regular sites. Strong bonding results in a diamagnetic adsorbed species and the energy required to reach the high-spin state increases. Moreover, a correlation appears between the low-spin to high-spin energy difference and the interaction energy hypothesizing that it is possible to prepare the surface to tune the high-spin to low-spin energy difference. Magnetic properties of adsorbed thin films obtained upon increasing coverage are more difficult to interpret. This is because the metallic bond is readily formed and dominates over the effect of the atoms directly bound to the vacancy.
Resumo:
Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) 13C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the 13C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the 13C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving 35,37Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the 35,37Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the 13C Larmor frequency further facilitates the polarization of the 13C nuclei by spin diffusion. Calculation of the 13C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.
Resumo:
By modifying a domain first suggested by Ruth Goodman in 1935 and by exploiting the explicit solution by Fedorov of the Polyá-Chebotarev problem in the case of four symmetrically placed points, an improved upper bound for the univalent Bloch-Landau constant is obtained. The domain that leads to this improved bound takes the form of a disk from which some arcs are removed in such a way that the resulting simply connected domain is harmonically symmetric in each arc with respect to the origin. The existence of domains of this type is established, using techniques from conformal welding, and some general properties of harmonically symmetric arcs in this setting are established.
Resumo:
We have studied the effect of pressure on the structural and vibrational properties of lanthanum tritungstate La2(WO4)3. This compound crystallizes under ambient conditions in the modulated scheelite-type structure known as the α phase. We have performed x-ray diffraction and Raman scattering measurements up to a pressure of 20 GPa, as well as ab initio calculations within the framework of the density functional theory. Up to 5 GPa, the three methods provide a similar picture of the evolution under pressure of α-La2(WO4)3. At 5 GPa, we begin to observe some structural changes, and above 6 GPa we find that the x-ray patterns cannot be indexed as a single phase. However, we find that a mixture of two phases with C2/c symmetry accounts for all diffraction peaks. Our ab initio study confirms the existence of several C2/c structures, which are very close in energy in this compression range. According to our measurements, a state with medium-range order appears at pressures above 9 and 11 GPa, from x-ray diffraction and Raman experiments, respectively. Based upon our theoretical calculations we propose several high-pressure candidates with high cationic coordinations at these pressures. The compound evolves into a partially amorphous phase at pressures above 20 GPa.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.
Resumo:
Oxygen vacancies in metal oxides are known to determine their chemistry and physics. The properties of neutral oxygen vacancies in metal oxides of increasing complexity (MgO, CaO, alpha-Al2O3, and ZnO) have been studied using density functional theory. Vacancy formation energies, vacancy-vacancy interaction, and the barriers for vacancy migration are determined and rationalized in terms of the ionicity, the Madelung potential, and lattice relaxation. It is found that the Madelung potential controls the oxygen vacancy properties of highly ionic oxides whereas a more complex picture arises for covalent ZnO.
Resumo:
The chemical properties of single-atomic chains of gold atoms are investigated using density functional calculations. The nanochains are shown to be unusually chemically active with strong chemisorption of oxygen atoms and carbon monoxide. The chemisorption energies vary significantly with the strain/stress conditions for the chain. Oxygen atoms are found to energetically prefer to get incorporated into a chain forming a new type of gold-oxygen nanochain with a conductance of one quantum unit. We suggest that the long bond lengths observed in electron microscopy investigations of gold chains can be due to oxygen incorporation.
Resumo:
The interface of MgO/Ag(001) has been studied with density functional theory applied to slabs. We have found that regular MgO films show a small adhesion to the silver substrate, the binding can be increased in off-stoichiometric regimes, either by the presence of O vacancies at the oxide film or by a small excess of O atoms at the interface between the ceramic to the metal. By means of theoretical methods, the scanning tunneling microscopy signatures of these films is also analyzed in some detail. For defect free deposits containing 1 or 2 ML and at low voltages, tunnelling takes place from the surface Ag substrate, and at large positive voltages Mg atoms are imaged. If defects, oxygen vacancies, are present on the surface of the oxide they introduce much easier channels for tunnelling resulting in big protrusions and controlling the shape of the image, the extra O stored at the interface can also be detected for very thin films.
Resumo:
Through an interplay between scanning tunneling microscopy experiments and density functional theory calculations, we determine unambiguously the active surface site responsible for the dissociation of water molecules adsorbed on rutile TiO2(110). Oxygen vacancies in the surface layer are shown to dissociate H2O through the transfer of one proton to a nearby oxygen atom, forming two hydroxyl groups for every vacancy. The amount of water dissociation is limited by the density of oxygen vacancies present on the clean surface exclusively. The dissociation process sets in as soon as molecular water is able to diffuse to the active site.