110 resultados para WEIGHTED EARLINESS
Resumo:
En este trabajo se propone la construcción de un índice de calidad ocupacional (ICO) a partir de los datos de la Encuesta de Inserción Laboral de los Graduados de las Universidades Catalanas realizada por la Agencia para la Calidad del Sistema Universitario de Catalunya (AQU), que ha de permitir un mejor análisis de la información que proporciona la encuesta y facilitar su comparación con estudios similares. La encuesta se realiza tres años después de la graduación. En este artículo, se utiliza la segunda encuesta realizada el año 2005 entre 11.456 graduados (52,63%) de la promoción 2001 (AQU, 2005, Serra-Ramoneda, 2007). El índice se ha elaborado a partir de los indicadores objetivos ‘tipo y duración del contrato laboral’, ‘retribución económica’, ‘adecuación entre la formación universitaria y el empleo’ a los que se otorga una puntuación ponderada según las respuestas dadas por los graduados. La suma de las puntuaciones se matiza con un coeficiente derivado del indicador subjetivo ‘satisfacción con el trabajo en general’. A partir de la información proporcionada por el índice, se realiza un análisis comparativo del nivel de calidad ocupacional que han logrado los graduados de áreas de conocimiento, ámbitos de trabajo, ramas de actividad y ubicaciones territoriales del empleo diferentes. Los resultados obtenidos permiten observar que entre los graduados catalanes los siguientes hechos son buenos predictores de la calidad de la ocupación: haber estudiado una carrera que no sea de Humanidades, ser un hombre, haber desempeñado durante la carrera un trabajo relacionado con los estudios, estar ocupado en la construcción, en instituciones financieras o en servicios a empresas, haber tenido algún tipo de movilidad por motivos de trabajo, trabajar fuera de Cataluña y hacerlo en empresas grandes, especialmente con más de 500 trabajadores. Finalmente, se presentan algunas reflexiones y propuestas que pueden resultar de interés para la orientación de los estudiantes y la planificación universitaria
Resumo:
[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.
Resumo:
[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.
Resumo:
We analyse the use of the ordered weighted average (OWA) in decision-making giving special attention to business and economic decision-making problems. We present several aggregation techniques that are very useful for decision-making such as the Hamming distance, the adequacy coefficient and the index of maximum and minimum level. We suggest a new approach by using immediate weights, that is, by using the weighted average and the OWA operator in the same formulation. We further generalize them by using generalized and quasi-arithmetic means. We also analyse the applicability of the OWA operator in business and economics and we see that we can use it instead of the weighted average. We end the paper with an application in a business multi-person decision-making problem regarding production management
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
We characterize the weighted Hardy inequalities for monotone functions in Rn +. In dimension n = 1, this recovers the standard theory of Bp weights. For n > 1, the result was previously only known for the case p = 1. In fact, our main theorem is proved in the more general setting of partly ordered measure spaces.
Resumo:
We give a necessary and sufficient condition for a sequence [ak}k in the unit ball of C° to be interpolating for the class A~°° of holomorphic functions with polynomial growth. The condition, which goes along the lines of the ones given by Berenstein and Li for some weighted spaces of entire functions and by Amar for H°° functions in the ball, is given in terms of the derivatives of m > n functions F Fm e A~°° vanishing on {ak)k.
Resumo:
Statistical properties of binary complex networks are well understood and recently many attempts have been made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to be made regarding the nature of the weights used in this generalization. Weights can be either continuous or discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature. This fact has not been addressed in the literature insofar and has deep implications on the network statistics. In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable) connections between nodes are considered. We develop a statistical mechanics framework where it is possible to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints including those depending both on the number of multiedges per link and their binary projection. The latter case is particularly interesting as we show that binary projections can be understood from multiedge processes. The implications of these results are important as many real-agent-based problems mapped onto graphs require this treatment for a proper characterization of their collective behavior.
Resumo:
A new method for decision making that uses the ordered weighted averaging (OWA) operator in the aggregation of the information is presented. It is used a concept that it is known in the literature as the index of maximum and minimum level (IMAM). This index is based on distance measures and other techniques that are useful for decision making. By using the OWA operator in the IMAM, we form a new aggregation operator that we call the ordered weighted averaging index of maximum and minimum level (OWAIMAM) operator. The main advantage is that it provides a parameterized family of aggregation operators between the minimum and the maximum and a wide range of special cases. Then, the decision maker may take decisions according to his degree of optimism and considering ideals in the decision process. A further extension of this approach is presented by using hybrid averages and Choquet integrals. We also develop an application of the new approach in a multi-person decision-making problem regarding the selection of strategies.
Resumo:
We analyse the use of the ordered weighted average (OWA) in decision-making giving special attention to business and economic decision-making problems. We present several aggregation techniques that are very useful for decision-making such as the Hamming distance, the adequacy coefficient and the index of maximum and minimum level. We suggest a new approach by using immediate weights, that is, by using the weighted average and the OWA operator in the same formulation. We further generalize them by using generalized and quasi-arithmetic means. We also analyse the applicability of the OWA operator in business and economics and we see that we can use it instead of the weighted average. We end the paper with an application in a business multi-person decision-making problem regarding production management
Resumo:
We analyze the process of informational exchange through complex networks by measuring network efficiencies. Aiming to study nonclustered systems, we propose a modification of this measure on the local level. We apply this method to an extension of the class of small worlds that includes declustered networks and show that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is also applied to characterize weighted networks. In particular we examine the properties of underground transportation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.
Resumo:
A particular property of the matched desiredimpulse response receiver is introduced in this paper, namely,the fact that full exploitation of the diversity is obtained withmultiple beamformers when the channel is spatially and timelydispersive. This particularity makes the receiver specially suitablefor mobile and underwater communications. The new structureprovides better performance than conventional and weightedVRAKE receivers, and a diversity gain with no needs of additionalradio frequency equipment. The baseband hardware neededfor this new receiver may be obtained through reconfigurabilityof the RAKE architectures available at the base station. Theproposed receiver is tested through simulations assuming UTRAfrequency-division-duplexing mode.
Resumo:
A unified and general vision of different space-time processors is presented. Many popular receivers can beaccomodated, like V-RAKE receivers, weighted V-RAKE, or spatial narrowband beamforming. By makingappropriate assumptions on the space/time characteristic of the interference it is possible to enhance theperformance of the receiver through spatial/temporal pre-processors. These receivers will be tested in the FDDmode of UTRA.
Resumo:
There is currently a considerable diversity of quantitative measures available for summarizing the results in single-case studies. Given that the interpretation of some of them is difficult due to the lack of established benchmarks, the current paper proposes an approach for obtaining further numerical evidence on the importance of the results, complementing the substantive criteria, visual analysis, and primary summary measures. This additional evidence consists of obtaining the statistical significance of the outcome when referred to the corresponding sampling distribution. This sampling distribution is formed by the values of the outcomes (expressed as data nonoverlap, R-squared, etc.) in case the intervention is ineffective. The approach proposed here is intended to offer the outcome"s probability of being as extreme when there is no treatment effect without the need for some assumptions that cannot be checked with guarantees. Following this approach, researchers would compare their outcomes to reference values rather than constructing the sampling distributions themselves. The integration of single-case studies is problematic, when different metrics are used across primary studies and not all raw data are available. Via the approach for assigning p values it is possible to combine the results of similar studies regardless of the primary effect size indicator. The alternatives for combining probabilities are discussed in the context of single-case studies pointing out two potentially useful methods one based on a weighted average and the other on the binomial test.
Resumo:
This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos