110 resultados para Trans-dimensional simulate annealing.
Resumo:
Using the experimental data of Paret and Tabeling [Phys. Rev. Lett. 79, 4162 (1997)] we consider in detail the dispersion of particle pairs by a two-dimensional turbulent flow and its relation to the kinematic properties of the velocity field. We show that the mean square separation of a pair of particles is governed by rather rare, extreme events and that the majority of initially close pairs are not dispersed by the flow. Another manifestation of the same effect is the fact that the dispersion of an initially dense cluster is not the result of homogeneously spreading the particles within the whole system. Instead it proceeds through a splitting into smaller but also dense clusters. The statistical nature of this effect is discussed.
Resumo:
Dynamic morphological transitions in thin-layer electrodeposits obtained from copper sulphate solutions have been studied. The chemical composition of the electrodeposits indicates that they appear as a consequence of the competition between copper and cuprous oxide formation. In addition, the Ohmic control of the process is verified at initial stages of the deposit growth. At higher deposit developments, gravity-induced convection currents play a role in the control of the whole process and affect the position of these transitions.
Resumo:
The influence of an inert electrolyte (sodium sulfate) on quasi-two-dimensional copper electrodeposition from a nondeaerated aqueous copper sulfate solution has been analyzed. The different morphologies for a fixed concentration of CuSO4 have been classified in a diagram in terms of the applied potential and the inert electrolyte concentration. The main conclusion is the extension of the well-known Ohmic model for the homogeneous growth regime for copper sulfate solutions with small amounts of sodium sulfate. Moreover, we have observed the formation of fingerlike deposits at large applied potential and inert electrolyte concentration values, before hydrogen evolution becomes the main electrode reaction.
Resumo:
The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.
Resumo:
Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.
Resumo:
Objective: To evaluate the agreement between multislice CT (MSCT) and intravascular ultrasound (IVUS) to assess the in-stent lumen diameters and lumen areas of left main coronary artery (LMCA) stents. Design: Prospective, observational single centre study. Setting: A single tertiary referral centre. Patients: Consecutive patients with LMCA stenting excluding patients with atrial fibrillation and chronic renal failure. Interventions: MSCT and IVUS imaging at 912 months follow-up were performed for all patients. Main outcome measures: Agreement between MSCT and IVUS minimum luminal area (MLA) and minimum luminal diameter (MLD). A receiver operating characteristic (ROC) curve was plotted to find the MSCT cut-off point to diagnose binary restenosis equivalent to 6 mm2 by IVUS. Results: 52 patients were analysed. PassingBablok regression analysis obtained a β coefficient of 0.786 (0.586 to 1.071) for MLA and 1.250 (0.936 to 1.667) for MLD, ruling out proportional bias. The α coefficient was −3.588 (−8.686 to −0.178) for MLA and −1.713 (−3.583 to −0.257) for MLD, indicating an underestimation trend of MSCT. The ROC curve identified an MLA ≤4.7 mm2 as the best threshold to assess in-stent restenosis by MSCT. Conclusions: Agreement between MSCT and IVUS to assess in-stent MLA and MLD for LMCA stenting is good. An MLA of 4.7 mm2 by MSCT is the best threshold to assess binary restenosis. MSCT imaging can be considered in selected patients to assess LMCA in-stent restenosis
Resumo:
We study energy relaxation in thermalized one-dimensional nonlinear arrays of the Fermi-Pasta-Ulam type. The ends of the thermalized systems are placed in contact with a zero-temperature reservoir via damping forces. Harmonic arrays relax by sequential phonon decay into the cold reservoir, the lower-frequency modes relaxing first. The relaxation pathway for purely anharmonic arrays involves the degradation of higher-energy nonlinear modes into lower-energy ones. The lowest-energy modes are absorbed by the cold reservoir, but a small amount of energy is persistently left behind in the array in the form of almost stationary low-frequency localized modes. Arrays with interactions that contain both a harmonic and an anharmonic contribution exhibit behavior that involves the interplay of phonon modes and breather modes. At long times relaxation is extremely slow due to the spontaneous appearance and persistence of energetic high-frequency stationary breathers. Breather behavior is further ascertained by explicitly injecting a localized excitation into the thermalized arrays and observing the relaxation behavior.
Resumo:
It is well established that at ambient and supercooled conditions water can be described as a percolating network of H bonds. This work is aimed at identifying, by neutron diffraction experiments combined with computer simulations, a percolation line in supercritical water, where the extension of the H-bond network is in question. It is found that in real supercritical water liquidlike states are observed at or above the percolation threshold, while below this threshold gaslike water forms small, sheetlike configurations. Inspection of the three-dimensional arrangement of water molecules suggests that crossing of this percolation line is accompa- nied by a change of symmetry in the first neighboring shell of molecules from trigonal below the line to tetrahedral above.
Resumo:
Vagueness and high dimensional space data are usual features of current data. The paper is an approach to identify conceptual structures among fuzzy three dimensional data sets in order to get conceptual hierarchy. We propose a fuzzy extension of the Galois connections that allows to demonstrate an isomorphism theorem between fuzzy sets closures which is the basis for generating lattices ordered-sets
Resumo:
Using the blackfold approach, we study new classes of higher-dimensional rotating black holes with electric charges and string dipoles, in theories of gravity coupled to a 2-form or 3-form field strength and to a dilaton with arbitrary coupling. The method allows to describe not only black holes with large angular momenta, but also other regimes that include charged black holes near extremality with slow rotation. We construct explicit examples of electric rotating black holes of dilatonic and non-dilatonic Einstein-Maxwell theory, with horizons of spherical and non-spherical topology. We also find new families of solutions with string dipoles, including a new class of prolate black rings. Whenever there are exact solutions that we can compare to, their properties in the appropriate regime are reproduced precisely by our solutions. The analysis of blackfolds with string charges requires the formulation of the dynamics of anisotropic fluids with conserved string-number currents, which is new, and is carried out in detail for perfect fluids. Finally, our results indicate new instabilities of near-extremal, slowly rotating charged black holes, and motivate conjectures about topological constraints on dipole hair.
Resumo:
Ca(2+) import into the lumen of the trans-Golgi network (TGN) by the secretory pathway calcium ATPase1 (SPCA1) is required for the sorting of secretory cargo. How is Ca(2+) retained in the lumen of the Golgi, and what is its role in cargo sorting? We show here that a soluble, lumenal Golgi resident protein, Cab45, is required for SPCA1-dependent Ca(2+) import into the TGN; it binds secretory cargo in a Ca(2+)-dependent reaction and is required for its sorting at the TGN.
Resumo:
Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface.