95 resultados para Object-Oriented Programming
Resumo:
The main goal of this observational and descriptive study is to evaluate whether the diagnosis axis of a nursing interface terminology meets the content validity criterion of being nursing-phenomena oriented. Nursing diagnosis concepts were analyzed in terms of presence in the nursing literature, type of articles published and areas of disciplinary interest. The search strategy was conducted in three databases with limits in relation to period and languages. The final analysis included 287 nursing diagnosis concepts. The results showed that most of the concepts were identified in the scientific literature, with a homogeneous distribution of types of designs. Most of these concepts (87.7%) were studied from two or more areas of disciplinary interest. Validity studies on disciplinary controlled vocabularies may contribute to demonstrate the nursing influence on patients" outcomes.
Resumo:
In this paper, we present a critical analysis of the state of the art in the definition and typologies of paraphrasing. This analysis shows that there exists no characterization of paraphrasing that is comprehensive, linguistically based and computationally tractable at the same time. The following sets out to define and delimit the concept on the basis of the propositional content. We present a general, inclusive and computationally oriented typology of the linguistic mechanisms that give rise to form variations between paraphrase pairs.
Resumo:
Biometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
Memoria de TFC en el que se analiza el estándar SQL:1999 y se compara con PostgreeSQL y Oracle.
Resumo:
Learning object repositories are a basic piece of virtual learning environments used for content management. Nevertheless, learning objects have special characteristics that make traditional solutions for content management ine ective. In particular, browsing and searching for learning objects cannot be based on the typical authoritative meta-data used for describing content, such as author, title or publicationdate, among others. We propose to build a social layer on top of a learning object repository, providing nal users with additional services fordescribing, rating and curating learning objects from a teaching perspective. All these interactions among users, services and resources can be captured and further analyzed, so both browsing and searching can be personalized according to user pro le and the educational context, helping users to nd the most valuable resources for their learning process. In this paper we propose to use reputation schemes and collaborative filtering techniques for improving the user interface of a DSpace based learning object repository.
Resumo:
In this paper we describe a proposal for defining the relationships between resources, users and services in a digital repository. Nowadays, virtual learning environments are widely used but digital repositories are not fully integrated yet into the learning process. Our final goal is to provide final users with recommendation systems and reputation schemes that help them to build a true learning community around the institutional repository, taking into account their educational context (i.e. the courses they are enrolled into) and their activity (i.e. system usage by their classmates and teachers). In order to do so, we extend the basic resource concept in a traditional digital repository by adding all the educational context and other elements from end-users' profiles, thus bridging users, resources and services, and shifting from a library-centered paradigm to a learning-centered one.
Resumo:
In robotics, having a 3D representation of the environment where a robot is working can be very useful. In real-life scenarios, this environment is constantly changing for example by human interaction, external agents or by the robot itself. Thus, the representation needs to be constantly updated and extended to account for these dynamic scene changes. In this work we face the problem of representing the scene where a robot is acting. Moreover, we ought to improve this representation by reusing the information obtained in previous scenes. Our goal is to build a method to represent a scene and to update it while changes are produced. In order to achieve that, different aspects of computer vision such as space representation or feature tracking are discussed
Resumo:
This paper presents a programming environment for supporting learning in STEM, particularly mobile robotic learning. It was designed to maintain progressive learning for people with and without previous knowledge of programming and/or robotics. The environment was multi platform and built with open source tools. Perception, mobility, communication, navigation and collaborative behaviour functionalities can be programmed for different mobile robots. A learner is able to programme robots using different programming languages and editor interfaces: graphic programming interface (basic level), XML-based meta language (intermediate level) or ANSI C language (advanced level). The environment supports programme translation transparently into different languages for learners or explicitly on learners’ demand. Learners can access proposed challenges and learning interfaces by examples. The environment was designed to allow characteristics such as extensibility, adaptive interfaces, persistence and low software/hardware coupling. Functionality tests were performed to prove programming environment specifications. UV BOT mobile robots were used in these tests
Resumo:
Semantic Web technology is able to provide the required computational semantics for interoperability of learning resources across different Learning Management Systems (LMS) and Learning Object Repositories (LOR). The EU research project LUISA (Learning Content Management System Using Innovative Semantic Web Services Architecture) addresses the development of a reference semantic architecture for the major challenges in the search, interchange and delivery of learning objects in a service-oriented context. One of the key issues, highlighted in this paper, is Digital Rights Management (DRM) interoperability. A Semantic Web approach to copyright management has been followed, which places a Copyright Ontology as the key component for interoperability among existing DRM systems and other licensing schemes like Creative Commons. Moreover, Semantic Web tools like reasoners, rule engines and semantic queries facilitate the implementation of an interoperable copyright management component in the LUISA architecture.
Resumo:
In this work, we present an integral scheduling system for non-dedicated clusters, termed CISNE-P, which ensures the performance required by the local applications, while simultaneously allocating cluster resources to parallel jobs. Our approach solves the problem efficiently by using a social contract technique. This kind of technique is based on reserving computational resources, preserving a predetermined response time to local users. CISNE-P is a middleware which includes both a previously developed space-sharing job scheduler and a dynamic coscheduling system, a time sharing scheduling component. The experimentation performed in a Linux cluster shows that these two scheduler components are complementary and a good coordination improves global performance significantly. We also compare two different CISNE-P implementations: one developed inside the kernel, and the other entirely implemented in the user space.
Resumo:
The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.
Resumo:
To the editor; The Visa Qualifying Examination is a two-day test composed of approximately 950 multiple-choice questions conerneing the basic and clinical sciences....