94 resultados para Object oriented database
Resumo:
In this paper, we present a critical analysis of the state of the art in the definition and typologies of paraphrasing. This analysis shows that there exists no characterization of paraphrasing that is comprehensive, linguistically based and computationally tractable at the same time. The following sets out to define and delimit the concept on the basis of the propositional content. We present a general, inclusive and computationally oriented typology of the linguistic mechanisms that give rise to form variations between paraphrase pairs.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
Memoria de TFC en el que se analiza el estándar SQL:1999 y se compara con PostgreeSQL y Oracle.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
The Quaternary Active Faults Database of Iberia (QAFI) is an initiative lead by the Institute of Geology and Mines of Spain (IGME) for building a public repository of scientific data regarding faults having documented activity during the last 2.59 Ma (Quaternary). QAFI also addresses a need to transfer geologic knowledge to practitioners of seismic hazard and risk in Iberia by identifying and characterizing seismogenic fault-sources. QAFI is populated by the information freely provided by more than 40 Earth science researchers, storing to date a total of 262 records. In this article we describe the development and evolution of the database, as well as its internal architecture. Aditionally, a first global analysis of the data is provided with a special focus on length and slip-rate fault parameters. Finally, the database completeness and the internal consistency of the data are discussed. Even though QAFI v.2.0 is the most current resource for calculating fault-related seismic hazard in Iberia, the database is still incomplete and requires further review.
Resumo:
Learning object repositories are a basic piece of virtual learning environments used for content management. Nevertheless, learning objects have special characteristics that make traditional solutions for content management ine ective. In particular, browsing and searching for learning objects cannot be based on the typical authoritative meta-data used for describing content, such as author, title or publicationdate, among others. We propose to build a social layer on top of a learning object repository, providing nal users with additional services fordescribing, rating and curating learning objects from a teaching perspective. All these interactions among users, services and resources can be captured and further analyzed, so both browsing and searching can be personalized according to user pro le and the educational context, helping users to nd the most valuable resources for their learning process. In this paper we propose to use reputation schemes and collaborative filtering techniques for improving the user interface of a DSpace based learning object repository.
Resumo:
In this paper we describe a proposal for defining the relationships between resources, users and services in a digital repository. Nowadays, virtual learning environments are widely used but digital repositories are not fully integrated yet into the learning process. Our final goal is to provide final users with recommendation systems and reputation schemes that help them to build a true learning community around the institutional repository, taking into account their educational context (i.e. the courses they are enrolled into) and their activity (i.e. system usage by their classmates and teachers). In order to do so, we extend the basic resource concept in a traditional digital repository by adding all the educational context and other elements from end-users' profiles, thus bridging users, resources and services, and shifting from a library-centered paradigm to a learning-centered one.
Resumo:
In robotics, having a 3D representation of the environment where a robot is working can be very useful. In real-life scenarios, this environment is constantly changing for example by human interaction, external agents or by the robot itself. Thus, the representation needs to be constantly updated and extended to account for these dynamic scene changes. In this work we face the problem of representing the scene where a robot is acting. Moreover, we ought to improve this representation by reusing the information obtained in previous scenes. Our goal is to build a method to represent a scene and to update it while changes are produced. In order to achieve that, different aspects of computer vision such as space representation or feature tracking are discussed
Resumo:
Semantic Web technology is able to provide the required computational semantics for interoperability of learning resources across different Learning Management Systems (LMS) and Learning Object Repositories (LOR). The EU research project LUISA (Learning Content Management System Using Innovative Semantic Web Services Architecture) addresses the development of a reference semantic architecture for the major challenges in the search, interchange and delivery of learning objects in a service-oriented context. One of the key issues, highlighted in this paper, is Digital Rights Management (DRM) interoperability. A Semantic Web approach to copyright management has been followed, which places a Copyright Ontology as the key component for interoperability among existing DRM systems and other licensing schemes like Creative Commons. Moreover, Semantic Web tools like reasoners, rule engines and semantic queries facilitate the implementation of an interoperable copyright management component in the LUISA architecture.
Resumo:
In this work, we present an integral scheduling system for non-dedicated clusters, termed CISNE-P, which ensures the performance required by the local applications, while simultaneously allocating cluster resources to parallel jobs. Our approach solves the problem efficiently by using a social contract technique. This kind of technique is based on reserving computational resources, preserving a predetermined response time to local users. CISNE-P is a middleware which includes both a previously developed space-sharing job scheduler and a dynamic coscheduling system, a time sharing scheduling component. The experimentation performed in a Linux cluster shows that these two scheduler components are complementary and a good coordination improves global performance significantly. We also compare two different CISNE-P implementations: one developed inside the kernel, and the other entirely implemented in the user space.
Resumo:
We use interplanetary transport simulations to compute a database of electron Green's functions, i.e., differential intensities resulting at the spacecraft position from an impulsive injection of energetic (>20 keV) electrons close to the Sun, for a large number of values of two standard interplanetary transport parameters: the scattering mean free path and the solar wind speed. The nominal energy channels of the ACE, STEREO, and Wind spacecraft have been used in the interplanetary transport simulations to conceive a unique tool for the study of near-relativistic electron events observed at 1 AU. In this paper, we quantify the characteristic times of the Green's functions (onset and peak time, rise and decay phase duration) as a function of the interplanetary transport conditions. We use the database to calculate the FWHM of the pitch-angle distributions at different times of the event and under different scattering conditions. This allows us to provide a first quantitative result that can be compared with observations, and to assess the validity of the frequently used term beam-like pitch-angle distribution.
Resumo:
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved.
Resumo:
The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Sponta-neous Speech and Emotional Response Analysis. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis by One-class classifier. One-class classifi-cation problem differs from multi-class classifier in one essen-tial aspect. In one-class classification it is assumed that only information of one of the classes, the target class, is available. In this work we explore the problem of imbalanced datasets that is particularly crucial in applications where the goal is to maximize recognition of the minority class as in medical diag-nosis. The use of information about outlier and Fractal Dimen-sion features improves the system performance.