81 resultados para Karyotipic evolution
Resumo:
This contribution analyzes the evolution of perception of certain natural hazards over the past 25 years in a Mediterranean region. Articles from newspapers have been used as indicator. To this end a specific Spanish journal has been considered and an ACCESS database has been created with the summarized information from each news item. The database includes data such as the location of each specific article in the newspaper, its length, the number of pictures and figures, the headlines and a summary of the published information, including all the instrumental data. The study focused on hydrometeorological extremes, mainly floods and droughts, in the northeast of the Iberian Peninsula. The number of headlines per event, trends and other data have been analyzed and compared with "measured" information, in order to identify any bias that could lead to an erroneous perception of the phenomenon. The SPI index (a drought index based on standardized accumulated precipitation) has been calculated for the entire region, and has been used for the drought analysis, while a geodatabase implemented on a GIS built for all the floods recorded in Catalonia since 1900 (INUNGAMA) has been used to analyze flood evolution. Results from a questionnaire about the impact of natural hazards in two specific places have been also used to discuss the various perceptions between rural and urban settings. Results show a better correlation between the news about drought or water scarcity and SPI than between news on floods in Catalonia and the INUNGAMA database. A positive trend has been found for non-catastrophic floods, which is explained by decrease of the perception thresholds, the increase of population density in the most flood-prone areas and changes in land use.
Resumo:
A long-standing question in evolutionary biology is what defines a species. The biological species concept considers a species as a population of individuals that interbreeds freely and produces viable offspring. Therefore, reproductive isolation is the essence of species. Hybrid necrosis is one form of post-zygotic reproductive isolation. In this chapter, we summarize what is known to date about this phenomenon and highlight progress made in the understanding of these immune-triggered hybrid incompatibilities through our research in the plant model Arabidopsis thaliana.
Resumo:
The present paper shows an in-depth analysis of the evolution of floods and precipitation in Catalonia for the period 1981-2010. In order to have homogeneous information, and having in mind that not gauge data was available for all the events, neither for all the rivers and stream flows, daily press from a specific newspaper has been systematically analysed for this period. Furthermore a comparison with a longer period starting in 1900 has been done. 219 flood events (mainly flash flood events) have been identified for the period of 30 years (375 starting in 1900), 79 of them were ordinary, 117 of them were extraordinary and 23 of them were catastrophic, being autumn and summer the seasons with the maxima values. 19% of the events caused a total of 110 casualties. 60% of them died when they tried to cross the street or the stream. Factors like the evolution of precipitation, population density and other socio-economical aspects have been considered. The trend analysis shows an increase of 1 flood/decade that probably has been mainly due to inter-annual and intra-annual changes in population density and in land-use and land-cover.
Resumo:
The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan.
Resumo:
A long-standing question in evolutionary biology is what defines a species. The biological species concept considers a species as a population of individuals that interbreeds freely and produces viable offspring. Therefore, reproductive isolation is the essence of species. Hybrid necrosis is one form of post-zygotic reproductive isolation. In this chapter, we summarize what is known to date about this phenomenon and highlight progress made in the understanding of these immune-triggered hybrid incompatibilities through our research in the plant model Arabidopsis thaliana.
Resumo:
A landscape mosaic is a landscape that consist of various patches, inhabited by different habitat communities over time. Agricultural mosaics area result of the long history between societies and the environment. The understanding of the driving forces for change in this landscapes, and their effect on biodiversity, allow the development of useful tools to assess and manage natural heritage. Plant diversity, endangered plant species and interesting habitats receive the center of attention, because of their capability to integrate and reflect the main changes of this landscapes after medium and long-term.