107 resultados para Input-output Tables
Resumo:
We focus on full-rate, fast-decodable space–time block codes (STBCs) for 2 x 2 and 4 x 2 multiple-input multiple-output (MIMO) transmission. We first derive conditions and design criteria for reduced-complexity maximum-likelihood (ML) decodable 2 x 2 STBCs, and we apply them to two families of codes that were recently discovered. Next, we derive a novel reduced-complexity 4 x 2 STBC, and show that it outperforms all previously known codes with certain constellations.
Resumo:
The 2×2 MIMO profiles included in Mobile WiMAX specifications are Alamouti’s space-time code (STC) fortransmit diversity and spatial multiplexing (SM). The former hasfull diversity and the latter has full rate, but neither of them hasboth of these desired features. An alternative 2×2 STC, which is both full rate and full diversity, is the Golden code. It is the best known 2×2 STC, but it has a high decoding complexity. Recently, the attention was turned to the decoder complexity, this issue wasincluded in the STC design criteria, and different STCs wereproposed. In this paper, we first present a full-rate full-diversity2×2 STC design leading to substantially lower complexity ofthe optimum detector compared to the Golden code with only a slight performance loss. We provide the general optimized form of this STC and show that this scheme achieves the diversitymultiplexing frontier for square QAM signal constellations. Then, we present a variant of the proposed STC, which provides a further decrease in the detection complexity with a rate reduction of 25% and show that this provides an interesting trade-off between the Alamouti scheme and SM.
Resumo:
We present a method to compute, quickly and efficiently, the mutual information achieved by an IID (independent identically distributed) complex Gaussian signal on a block Rayleigh-faded channel without side information at the receiver. The method accommodates both scalar and MIMO (multiple-input multiple-output) settings. Operationally, this mutual information represents the highest spectral efficiency that can be attained using Gaussiancodebooks. Examples are provided that illustrate the loss in spectral efficiency caused by fast fading and how that loss is amplified when multiple transmit antennas are used. These examples are further enriched by comparisons with the channel capacity under perfect channel-state information at the receiver, and with the spectral efficiency attained by pilot-based transmission.
Resumo:
We present a method to compute, quickly and efficiently, the mutual information achieved by an IID (independent identically distributed) complex Gaussian signal on a block Rayleigh-faded channel without side information at the receiver. The method accommodates both scalar and MIMO (multiple-input multiple-output) settings. Operationally, this mutual information represents the highest spectral efficiency that can be attained using Gaussiancodebooks. Examples are provided that illustrate the loss in spectral efficiency caused by fast fading and how that loss is amplified when multiple transmit antennas are used. These examples are further enriched by comparisons with the channel capacity under perfect channel-state information at the receiver, and with the spectral efficiency attained by pilot-based transmission.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
We study the minimum mean square error (MMSE) and the multiuser efficiency η of large dynamic multiple access communication systems in which optimal multiuser detection is performed at the receiver as the number and the identities of active users is allowed to change at each transmission time. The system dynamics are ruled by a Markov model describing the evolution of the channel occupancy and a large-system analysis is performed when the number of observations grow large. Starting on the equivalent scalar channel and the fixed-point equation tying multiuser efficiency and MMSE, we extend it to the case of a dynamic channel, and derive lower and upper bounds for the MMSE (and, thus, for η as well) holding true in the limit of large signal–to–noise ratios and increasingly large observation time T.
Resumo:
Multiple-input multiple-output (MIMO) techniques have become an essential part of broadband wireless communications systems. For example, the recently developed IEEE 802.16e specifications for broadband wireless access include three MIMOprofiles employing 2×2 space-time codes (STCs), and two of these MIMO schemes are mandatory on the downlink of Mobile WiMAX systems. One of these has full rate, and the other has full diversity, but neither of them has both of the desired features. The third profile, namely, Matrix C, which is not mandatory, is both a full rate and a full diversity code, but it has a high decoder complexity. Recently, the attention was turned to the decodercomplexity issue and including this in the design criteria, several full-rate STCs were proposed as alternatives to Matrix C. In this paper, we review these different alternatives and compare them to Matrix C in terms of performances and the correspondingreceiver complexities.
Resumo:
Silver Code (SilC) was originally discovered in [1–4] for 2×2 multiple-input multiple-output (MIMO) transmission. It has non-vanishing minimum determinant 1/7, slightly lower than Golden code, but is fast-decodable, i.e., it allows reduced-complexity maximum likelihood decoding [5–7]. In this paper, we present a multidimensional trellis-coded modulation scheme for MIMO systems [11] based on set partitioning of the Silver Code, named Silver Space-Time Trellis Coded Modulation (SST-TCM). This lattice set partitioning is designed specifically to increase the minimum determinant. The branches of the outer trellis code are labeled with these partitions. Viterbi algorithm is applied for trellis decoding, while the branch metrics are computed by using a sphere-decoding algorithm. It is shown that the proposed SST-TCM performs very closely to the Golden Space-Time Trellis Coded Modulation (GST-TCM) scheme, yetwith a much reduced decoding complexity thanks to its fast-decoding property.
Resumo:
We formulate performance assessment as a problem of causal analysis and outline an approach based on the missing data principle for its solution. It is particularly relevant in the context of so-called league tables for educational, health-care and other public-service institutions. The proposed solution avoids comparisons of institutions that have substantially different clientele (intake).
Resumo:
We develop a model of an industry with many heterogeneous firms that face both financing constraints and irreversibility constraints. The financing constraint implies that firms cannot borrow unless the debt is secured by collateral; the irreversibility constraint that they can only sell their fixed capital by selling their business. We use this model to examine the cyclical behavior of aggregate fixed investment, variable capital investment, and output in the presence of persistent idiosyncratic and aggregate shocks. Our model yields three main results. First, the effect of the irreversibility constraint on fixed capital investment is reinforced by the financing constraint. Second, the effect of the financing constraint on variable capital investment is reinforced by the irreversibility constraint. Finally, the interaction between the two constraints is key for explaining why input inventories and material deliveries of US manufacturing firms are so volatile and procyclical, and also why they are highly asymmetrical over the business cycle.
Resumo:
The aim of this paper is to analyse the impact of university knowledge and technology transfer activities on academic research output. Specifically, we study whether researchers with collaborative links with the private sector publish less than their peers without such links, once controlling for other sources of heterogeneity. We report findings from a longitudinal dataset on researchers from two engineering departments in the UK between 1985 until 2006. Our results indicate that researchers with industrial links publish significantly more than their peers. Academic productivity, though, is higher for low levels of industry involvement as compared to high levels.
Resumo:
We evaluate conditional predictive densities for U.S. output growth and inflationusing a number of commonly used forecasting models that rely on a large number ofmacroeconomic predictors. More specifically, we evaluate how well conditional predictive densities based on the commonly used normality assumption fit actual realizationsout-of-sample. Our focus on predictive densities acknowledges the possibility that, although some predictors can improve or deteriorate point forecasts, they might have theopposite effect on higher moments. We find that normality is rejected for most modelsin some dimension according to at least one of the tests we use. Interestingly, however,combinations of predictive densities appear to be correctly approximated by a normaldensity: the simple, equal average when predicting output growth and Bayesian modelaverage when predicting inflation.
Resumo:
A key aspect of industrialization is theadoption of increasing-returns-to-scale, industrial,technologies. Two other, well-documented aspects arethat industrial technologies are adopted throughoutintermediate-input chains and that they use intermediateinputs intensively relative to the technologies theyreplace. These features of industrial technologiescombined imply that countries with access to similartechnologies may have very different levels ofindustrialization and income, even if the degree ofincreasing returns to scale at the firm level is relativelysmall. Furthermore, a small improvement in theproductivity of industrial technologies can trigger full-scaleindustrialization and a large increase in income.
Resumo:
We formulate performance assessment as a problem of causal analysis and outline an approach based on the missing data principle for its solution. It is particularly relevant in the context of so-called league tables for educational, health-care and other public-service institutions. The proposed solution avoids comparisons of institutions that have substantially different clientele (intake).
Resumo:
The application of correspondence analysis to square asymmetrictables is often unsuccessful because of the strong role played by thediagonal entries of the matrix, obscuring the data off the diagonal. A simplemodification of the centering of the matrix, coupled with the correspondingchange in row and column masses and row and column metrics, allows the tableto be decomposed into symmetric and skew--symmetric components, which canthen be analyzed separately. The symmetric and skew--symmetric analyses canbe performed using a simple correspondence analysis program if the data areset up in a special block format.