134 resultados para INTERFACIAL PROPERTIES
Resumo:
We have studied the growth of interfaces in driven diffusive systems well below the critical temperature by means of Monte Carlo simulations. We consider the region beyond the linear regime and of large values of the external field which has not been explored before. The simulations support the existence of interfacial traveling waves when asymmetry is introduced in the model, a result previously predicted by a linear-stability analysis. Furthermore, the generalization of the Gibbs-Thomson relation is discussed. The results provide evidence that the external field is a stabilizing effect which can be considered as effectively increasing the surface tension.
Resumo:
The dynamics of an interface separating the two coexistent phases of a binary system in the presence of external fluctuations in temperature is studied. An interfacial instability is obtained for an interface that would be stable in the absence of fluctuations or in the presence of internal fluctuations. Analytical stability analysis and numerical simulations are in accordance with an explanation of these effects in terms of a quenchlike instability induced by fluctuations.
Resumo:
We develop a systematic method to derive all orders of mode couplings in a weakly nonlinear approach to the dynamics of the interface between two immiscible viscous fluids in a Hele-Shaw cell. The method is completely general: it applies to arbitrary geometry and driving. Here we apply it to the channel geometry driven by gravity and pressure. The finite radius of convergence of the mode-coupling expansion is found. Calculation up to third-order couplings is done, which is necessary to account for the time-dependent Saffman-Taylor finger solution and the case of zero viscosity contrast. The explicit results provide relevant analytical information about the role that the viscosity contrast and the surface tension play in the dynamics of the system. We finally check the quantitative validity of different orders of approximation and a resummation scheme against a physically relevant, exact time-dependent solution. The agreement between the low-order approximations and the exact solution is excellent within the radius of convergence, and is even reasonably good beyond this radius.
Resumo:
We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl-NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic-fluid¿pipe system. Three different optical measurement techniques have been employed. Laser Doppler anemometry has been used to measure the magnitude of the velocity at the center of the liquid column. Particle image velocimetry and optical deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid-air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behavior of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries.
Resumo:
We present the study of discrete breather dynamics in curved polymerlike chains consisting of masses connected via nonlinear springs. The polymer chains are one dimensional but not rectilinear and their motion takes place on a plane. After constructing breathers following numerically accurate procedures, we launch them in the chains and investigate properties of their propagation dynamics. We find that breather motion is strongly affected by the presence of curved regions of polymers, while the breathers themselves show a very strong resilience and remarkable stability in the presence of geometrical changes. For chains with strong angular rigidity we find that breathers either pass through bent regions or get reflected while retaining their frequency. Their motion is practically lossless and seems to be determined through local energy conservation. For less rigid chains modeled via second neighbor interactions, we find similarly that chain geometry typically does not destroy the localized breather states but, contrary to the angularly rigid chains, it induces some small but constant energy loss. Furthermore, we find that a curved segment acts as an active gate reflecting or refracting the incident breather and transforming its velocity to a value that depends on the discrete breathers frequency. We analyze the physical reasoning behind these seemingly general breather properties.
Resumo:
The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x~0.001 . The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x.
Resumo:
We review recent results on dynamical aspects of viscous fingering. The Saffman¿Taylor instability is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical solvability scenario associated to surface tension in analogy with the traditional selection theory is put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers. The inherently dynamical singular effects of surface tension are clarified. The dynamical role of viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman¿Taylor finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions. We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows, topological singularities and wetting effects, and also discuss future directions in the context of viscous fingering
Resumo:
We have studied the effect of heat treatment on the magnetic properties and on the martensitic transition of the Ni50Mn30Al20 alloy. A mixed L21+B2 state is obtained in the as-prepared sample, while no L21 order is retained in the sample quenched from high temperature. For the two heat treatments, the samples order antiferromagnetically, but there is evidence of coexisting ferromagnetic interactions. A martensitic transition occurs below the magnetic one for quenched samples. However, the martensitic transition is inhibited in the as-prepared sample.
Resumo:
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Resumo:
For a dynamical system defined by a singular Lagrangian, canonical Noether symmetries are characterized in terms of their commutation relations with the evolution operators of Lagrangian and Hamiltonian formalisms. Separate characterizations are given in phase space, in velocity space, and through an evolution operator that links both spaces. 2000 American Institute of Physics.
Resumo:
We have studied the interfacial instabilities experienced by a liquid annulus as it moves radially in a circular Hele-Shaw cell rotating with angular velocity Omega. The instability of the leading interface (oil displacing air) is driven by the density difference in the presence of centrifugal forcing, while the instability of the trailing interface (air displacing oil) is driven by the large viscosity contrast. A linear stability analysis shows that the stability of the two interfaces is coupled through the pressure field already at a linear level. We have performed experiments in a dry cell and in a cell coated with a thin fluid layer on each plate, and found that the stability depends substantially on the wetting conditions at the leading interface. Our experimental results of the number of fingers resulting from the instability compare well with the predictions obtained through a numerical integration of the coupled equations derived from a linear stability analysis. Deep in the nonlinear regime we observe the emission of liquid droplets through the formation of thin filaments at the tip of outgrowing fingers.
Resumo:
Transparent conducting, aluminium doped zinc oxide thin films (ZnO:Al) were deposited by radio frequency (RF) magnetron sputtering. The RF power was varied from 60 to 350Wwhereas the substrate temperature was kept at 160 °C. The structural, electrical and optical properties of the as-deposited films were found to be influenced by the deposition power. The X-ray diffraction analysis showed that all the films have a strong preferred orientation along the [001] direction. The crystallite size was varied from 14 to 36 nm, however no significant change was observed in the case of lattice constant. The optical band gap varied in the range 3.44-3.58 eV. The lowest resistivity of 1.2×10 -3Vcm was shown by the films deposited at 250 W. The mobility of the films was found to increase with the deposition power.
Resumo:
Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.