82 resultados para Finite-dimensional discrete phase spaces


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using atomic force microscopy we have studied the nanomechanical response to nanoindentations of surfaces of highly oriented molecular organic thin films (thickness¿1000¿nm). The Young¿s modulus E can be estimated from the elastic deformation using Hertzian mechanics. For the quasi-one-dimensional metal tetrathiafulvalene tetracyanoquinodimethane E~20¿GPa and for the ¿ phase of the p-nitrophenyl nitronyl nitroxide radical E~2GPa. Above a few GPa, the surfaces deform plastically as evidenced by discrete discontinuities in the indentation curves associated to molecular layers being expelled by the penetrating tip.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following a scheme of Levin we describe the values that functions in Fock spaces take on lattices of critical density in terms of both the size of the values and a cancelation condition that involves discrete versions of the Cauchy and Beurling-Ahlfors transforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonequilibrium phase transitions occurring in a fast-ionic-conductor model and in a reaction-diffusion Ising model are studied by Monte Carlo finite-size scaling to reveal nonclassical critical behavior; our results are compared with those in related models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of water can have a strong dependence on the confinement. Here, we consider a water monolayer nanoconfined between hydrophobic parallel walls under conditions that prevent its crystallization. We investigate, by simulations of a many-body coarse-grained water model, how the properties of the liquid are affected by the confinement. We show, by studying the response functions and the correlation length and by performing finite-size scaling of the appropriate order parameter, that at low temperature the monolayer undergoes a liquid-liquid phase transition ending in a critical point in the universality class of the two-dimensional (2D) Ising model. Surprisingly, by reducing the linear size L of the walls, keeping the walls separation h constant, we find a 2D-3D crossover for the universality class of the liquid-liquid critical point for L/h=~50, i.e. for a monolayer thickness that is small compared to its extension. This result is drastically different from what is reported for simple liquids, where the crossover occurs for , and is consistent with experimental results and atomistic simulations. We shed light on these findings showing that they are a consequence of the strong cooperativity and the low coordination number of the hydrogen bond network that characterizes water.