118 resultados para Energy industries.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To cosmic rays incident near the horizon the Earth's atmosphere represents a beam dump with a slant depth reaching 36 000 g cm-2 at 90. The prompt decay of a heavy quark produced by very high energy cosmic ray showers will leave an unmistakable signature in this dump. We translate the failure of experiments to detect such a signal into an upper limit on the heavy quark hadroproduction cross section in the energy region beyond existing accelerators. Our results disfavor any rapid growth of the cross section or the gluon structure function beyond conservative estimates based on perturbative QCD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, such as the variational correlated theory, the Bogoliubov model, and the uniform limit approximation, valid in the weak-interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. Jastrow-type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-sphere potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of x~0.001. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of x. The occurrence of a maximum in the radial distribution function, in the momentum distribution, and in the excitation spectrum is a natural effect of the correlations when x increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach is very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the recently obtained theoretical expression for the complete QCD static energy at next-to-next-to-next-to leading-logarithmic accuracy to determine r(0)Lambda((MS) over bar) by comparison with available lattice data, where r(0) is the lattice scale and Lambda((MS) over bar) is the QCD scale. We obtain r(0)Lambda((MS) over bar) = 0.622(-0.015)(+0.019) for the zero-flavor case. The procedure we describe can be directly used to obtain r(0)Lambda((MS) over bar) in the unquenched case, when unquenched lattice data for the static energy at short distances becomes available. Using the value of the strong coupling alpha(s) as an input, the unquenched result would provide a determination of the lattice scale r(0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific models of the kaon and pion self-energy. The in-medium spectral densities of the K and (K) over bar mesons are obtained from a chiral unitary approach in coupled channels that incorporates the S and P waves of the kaon-nucleon interaction. The pion self-energy is determined from the P-wave coupling to particle-hole and Delta-hole excitations, modified by short-range correlations. The sum rules for the lower-energy weights are fulfilled satisfactorily and reflect the contributions from the different quasiparticle and collective modes of the meson spectral function. We discuss the sensitivity of the sum rules to the distribution of spectral strength and their usefulness as quality tests of model calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple expression for the Gibbs free energy of formation of a pure component or a eutectic alloy glass, relative to the stable crystalline phase (or phases) at the same temperature is deduced by use of thermodynamic arguments. The expression obtained is supposed to apply to both monocomponent and multicomponent liquid alloys that might become glasses from the supercooled liquid state, irrespective of the critical cooling rate needed to avoid crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (MX2) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Monte Carlo simulations we study the dynamics of three-dimensional Ising models with nearest-, next-nearest-, and four-spin (plaquette) interactions. During coarsening, such models develop growing energy barriers, which leads to very slow dynamics at low temperature. As already reported, the model with only the plaquette interaction exhibits some of the features characteristic of ordinary glasses: strong metastability of the supercooled liquid, a weak increase of the characteristic length under cooling, stretched-exponential relaxation, and aging. The addition of two-spin interactions, in general, destroys such behavior: the liquid phase loses metastability and the slow-dynamics regime terminates well below the melting transition, which is presumably related with a certain corner-rounding transition. However, for a particular choice of interaction constants, when the ground state is strongly degenerate, our simulations suggest that the slow-dynamics regime extends up to the melting transition. The analysis of these models leads us to the conjecture that in the four-spin Ising model domain walls lose their tension at the glassy transition and that they are basically tensionless in the glassy phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of the spin density functional theory simultaneously accounting for dielectric mismatch between neighboring materials and nonparabolicity corrections originating from interactions between conduction and valence bands is presented. This method is employed to calculate ground state and addition energy spectra of homogeneous and multishell spherical quantum dots. Our calculations reveal that corrections become especially relevant when they come into play simultaneously in strong regimes of spatial confinement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the influence of the density dependence of the symmetry energy on the average excitation energy of the isoscalar giant monopole resonance (GMR) in stable and exotic neutron-rich nuclei by applying the relativistic extended Thomas-Fermi method in scaling and constrained calculations. For the effective nuclear interaction, we employ the relativistic mean field model supplemented by an isoscalar-isovector meson coupling that allows one to modify the density dependence of the symmetry energy without compromising the success of the model for binding energies and charge radii. The semiclassical estimates of the average energy of the GMR are known to be in good agreement with the results obtained in full RPA calculations. The present analysis is performed along the Pb and Zr isotopic chains. In the scaling calculations, the excitation energy is larger when the symmetry energy is softer. The same happens in the constrained calculations for nuclei with small and moderate neutron excess. However, for nuclei of large isospin the constrained excitation energy becomes smaller in models having a soft symmetry energy. This effect is mainly due to the presence of loosely-bound outer neutrons in these isotopes. A sharp increase of the estimated width of the resonance is found in largely neutron-rich isotopes, even for heavy nuclei, which is enhanced when the symmetry energy of the model is soft. The results indicate that at large neutron numbers the structure of the low-energy region of the GMR strength distribution changes considerably with the density dependence of the nuclear symmetry energy, which may be worthy of further characterization in RPA calculations of the response function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the experimental values of the chemical potentials of liquid 4He and of a 3He impurity in liquid 4He, we derive a model-independent lower (upper) bound to the kinetic (potential) energy per particle at zero temperature. The values of the bounds at the experimental saturation density are 13.42 K for the kinetic energy and -20.59 K for the potential energy. All the theoretical calculations based on the Lennard-Jones potential violate the upper-bound condition for the potential energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a very simple but fairly unknown method to obtain exact lower bounds to the ground-state energy of any Hamiltonian that can be partitioned into a sum of sub-Hamiltonians. The technique is applied, in particular, to the two-dimensional spin-1/2 antiferromagnetic Heisenberg model. Reasonably good results are easily obtained and the extension of the method to other systems is straightforward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions.