95 resultados para Diamond Films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescence spectroscopy has been used to characterize MgO films prepared by rf-sputtering. A clear correlation is found between the appearance of an emission peak centered at approximately 460 nm and the detection of ferromagnetic ordering in the samples. We suggest that cationic vacancies are responsible for the blue-light emission by introducing p states into the electronic band-gap. In accordance with this, our results strongly indicate that cationic vacancies are at the heart of the appearance of long-range magnetic ordering in MgO films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and optical characterization of copper phthalocyanine thin film thermally deposited at different substrate temperatures was the aim of this work. The morphology of the films shows strong dependence on temperature, as can be observed by atomic force microscopy and x-ray diffraction spectroscopy, specifically in the grain size and features of the grains. The increase in the crystal phase with substrate temperature is shown by x-ray diffractometry. Optical absorption coefficient measured by photothermal deflection spectroscopy and optical transmittance reveal a weak dependence on the substrate temperature. Besides, the electro-optical response measured by the external quantum efficiency of Schottky ITO/CuPc/Al diodes shows an optimized response for samples deposited at a substrate temperature of 60 °C, in correspondence to the I-V diode characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the growth of epitaxial YBa2Cu3O7 thin films on X-cut LiNbO3 single crystals. The use of double CeO2/YSZ buffer layers allows a single in-plane orientation of YBa2Cu3O7, and results in superior superconducting properties. In particular, surface resistance Rs values of 1.4 m¿ have been measured at 8 GHz and 65 K. The attainment of such low values of Rs constitutes a key step toward the incorporation of high Tc materials as electrodes in photonic and acoustic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work annealing and growth of CuInS2 thin films is investigated with quasireal-time in situ Raman spectroscopy. During the annealing a shift of the Raman A1 mode towards lower wave numbers with increasing temperature is observed. A linear temperature dependence of the phonon branch of ¿2 cm¿1/100 K is evaluated. The investigation of the growth process (sulfurization of metallic precursors) with high surface sensitivity reveals the occurrence of phases which are not detected with bulk sensitive methods. This allows a detailed insight in the formation of the CuInS2 phases. Independent from stoichiometry and doping of the starting precursors the CuAu ordering of CuInS2 initially forms as the dominating ordering. The transformation of the CuAu ordering into the chalcopyrite one is, in contrast, strongly dependent on the precursor composition and requires high temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of hydrogen in polysilicon films obtained at low temperatures by hot-wire CVD and the post-deposition oxidation by air-exposure of the films are studied in this paper. The experimental results from several characterization techniques (infrared spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry and wavelength dispersive spectroscopy) showed that hydrogen and oxygen are homogeneously distributed at grain boundaries throughout the depth of the films. Hydrogen is introduced during the growth process and its concentration is higher in samples deposited at lower temperatures. Oxygen diffuses along the grain boundaries and binds to silicon atoms, mainly in Si 2O groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible up-conversion in ZnO:Er and ZnO:Er:Yb thin films deposited by RF magnetron sputtering under different O2-rich atmospheres has been studied. Conventional photoluminescence (325 nm laser source) and up-conversion (980 nm laser source) have been performed in the films before and after an annealing process at 800 °C. The resulting spectra demonstrate that the thermal treatment, either during or post-deposition, activates optically the Er3+ ions, being the latter process much more efficient. Moreover, the atmosphere during deposition was also found to be an important parameter, as the deposition under O2 flow increases the optical activity of Er+3 ions. In addition, the inclusion of Yb3+ ions into the films has shown an enhancement of the visible up-conversion emission at 660 nm by a factor of 4, which could be associated to either a better energy transfer from the 2F5/2 Yb level to the 4I11/2 Er one, or to the prevention of having Er2O3 clustering in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the current transport and electroluminescence properties of metal oxide semiconductor MOS devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10−3%. © 2009 American Institute of Physics. doi:10.1063/1.3213386

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical properties of heavily In‐doped polycrystalline CdS films have been studied as a function of the doping level. The films were prepared by vacuum coevaporation of CdS and In. Conductivity and Hall measurements were performed over the temperature range 77-400 K. The conductivity decreases weakly with the temperature and shows a tendency towards saturation at low temperatures. A simple relationship σ=σ0(1+βT2) is found in the low‐temperature range. The temperature dependence of the mobility is similar to that of the conductivity since the Hall coefficient is found to be a constant in the whole temperature range. We interpret the experimental results in terms of a modified version of grain‐boundary trapping Seto"s model, taking into account thermionic emission and tunneling of carriers through the potential barriers. The barriers are found to be high and narrow, and tunneling becomes the predominating transport mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon (a‐Si:H) thin films have been obtained from pure SiH4 rf discharges by using the square wave modulation (SQWM) method. Film properties have been studied by means of spectroellipsometry, thermal desorption spectrometry, photothermal deflection spectroscopy and electrical conductivity measurements, as a function of the modulation frequency of the rf power amplitude (0.2-4000 Hz). The films deposited at frequencies about 1 kHz show the best structural and optoelectronic characteristics. Based upon the experimental results, a qualitative model is presented, which points up the importance of plasma negative ions in the deposition of a‐Si:H from SQWM rf discharges through their influence on powder particle formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, (011)-highly oriented Sr, Nb co-doped BiFeO3 (BFO) thin films were successfully grown on SrRuO3/Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of 5.3 nm and average grain sizes of 65-70 nm for samples with different thicknesses. Remanent polarization values (2Pr) of 54 lC cm 2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe3þ/Fe2þ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/ SrRuO3/Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the abrupt and hysteretic changes of resistance in MgO-based capacitor devices. The switching behavior is discussed in terms of the formation and rupture of conduction filaments due to the migration of structural defects in the electric field, together with the redox events which affects the mobile carriers. The results presented in this paper suggest that MgO transparent films combining ferromagnetism and multilevel switching characteristics might pave the way for a new method for spintronic multibit data storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study the electronic surface passivation of crystalline silicon with intrinsic thin silicon films deposited by Catalytic CVD. The contactless method used to determine the effective surface recombination velocity was the quasi-steady-state photoconductance technique. Hydrogenated amorphous and nanocrystalline silicon films were evaluated as passivating layers on n- and p-type float zone silicon wafers. The best results were obtained with amorphous silicon films, which allowed effective surface recombination velocities as low as 60 and 130 cms -1 on p- and n-type silicon, respectively. To our knowledge, these are the best results ever reported with intrinsic amorphous silicon films deposited by Catalytic CVD. The passivating properties of nanocrystalline silicon films strongly depended on the deposition conditions, especially on the filament temperature. Samples grown at lower filament temperatures (1600 °C) allowed effective surface recombination velocities of 450 and 600 cms -1 on n- and p-type silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron energy-loss spectroscopy is used to map composition and electronic states in epitaxial La2/3Ca1/3MnO3 films grown on SrTiO3 001 and 110 substrates. It is found that in partially relaxed 110 films cationic composition and valence state of Mn3+/4+ ions are preserved across the film thickness. In contrast, in fully strained 001 films, the Ca/La ratio gradually changes across the film, being La rich at film/substrate interface and La depleted at free surface; Mn valence state changes accordingly. These observations suggest that a strongly orientation-dependent adaptative composition mechanism dominates stress accommodation in manganite films and provides microscopic understanding of their dissimilar magnetic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi1.5Zn1Nb1.5O7 (BZN) epitaxial thin films were grown by pulsed laser deposition on Al2O3 with a double ZnO buffer layer through domain matching epitaxy (DME) mechanism. The pole figure analysis and reciprocal space mapping revealed the single crystalline nature of the thin film. The pole figure analysis also shows a 60º twinning for the (222) oriented crystals. Sharp intense spots in the SAED pattern also indicate the high crystalline nature of BZN thin film. The Fourier filtered HRTEM images of the BZN-ZnO interface confirms the domain matched epitaxy of BZN with ZnO buffer. An electric field dependent dielectric tunability of 68% was obtained for the BZN thin films with inter digital capacitors patterned over the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopic ellipsometry and high resolution transmission electron microscopy have been used to characterize microcrystalline silicon films. We obtain an excellent agreement between the multilayer model used in the analysis of the optical data and the microscopy measurements. Moreover, thanks to the high resolution achieved in the microscopy measurements and to the improved optical models, two new features of the layer-by-layer deposition of microcrystalline silicon have been detected: i) the microcrystalline films present large crystals extending from the a-Si:H substrate to the film surface, despite the sequential process in the layer-by-layer deposition; and ii) a porous layer exists between the amorphous silicon substrate and the microcrystalline silicon film.