196 resultados para DYNAMICAL MODELS
Resumo:
Calculating explicit closed form solutions of Cournot models where firms have private information about their costs is, in general, very cumbersome. Most authors consider therefore linear demands and constant marginal costs. However, within this framework, the nonnegativity constraint on prices (and quantities) has been ignored or not properly dealt with and the correct calculation of all Bayesian Nash equilibria is more complicated than expected. Moreover, multiple symmetric and interior Bayesianf equilibria may exist for an open set of parameters. The reason for this is that linear demand is not really linear, since there is a kink at zero price: the general ''linear'' inverse demand function is P (Q) = max{a - bQ, 0} rather than P (Q) = a - bQ.
Resumo:
We present the derivation of the continuous-time equations governing the limit dynamics of discrete-time reaction-diffusion processes defined on heterogeneous metapopulations. We show that, when a rigorous time limit is performed, the lack of an epidemic threshold in the spread of infections is not limited to metapopulations with a scale-free architecture, as it has been predicted from dynamical equations in which reaction and diffusion occur sequentially in time
Resumo:
We present a detailed analytical and numerical study of the avalanche distributions of the continuous damage fiber bundle model CDFBM . Linearly elastic fibers undergo a series of partial failure events which give rise to a gradual degradation of their stiffness. We show that the model reproduces a wide range of mechanical behaviors. We find that macroscopic hardening and plastic responses are characterized by avalanche distributions, which exhibit an algebraic decay with exponents between 5/2 and 2 different from those observed in mean-field fiber bundle models. We also derive analytically the phase diagram of a family of CDFBM which covers a large variety of potential avalanche size distributions. Our results provide a unified view of the statistics of breaking avalanches in fiber bundle models
Resumo:
The speed of front propagation in fractals is studied by using (i) the reduction of the reaction-transport equation into a Hamilton-Jacobi equation and (ii) the local-equilibrium approach. Different equations proposed for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we analyze the main features of wave fronts resulting from this dynamic process, i.e., why they are accelerated and what is the exact form of this acceleration
Resumo:
The introduction of an infective-infectious period on the geographic spread of epidemics is considered in two different models. The classical evolution equations arising in the literature are generalized and the existence of epidemic wave fronts is revised. The asymptotic speed is obtained and improves previous results for the Black Death plague
Resumo:
Es tracta d'un projecte que proposa una aplicació per al calibratge automàtic de models P-sistema. Per a fer-ho primer es farà un estudi sobre els models P-sistema i el procediment seguit pels investigadors per desenvolupar aquest tipus de models. Es desenvoluparà una primera solució sèrie per al problema, i s'analitzaran els seus punts febles. Seguidament es proposarà una versió paral·lela que millori significativament el temps d'execució, tot mantenint una alta eficiència i escalabilitat.
Resumo:
En aquest projecte, tractarem de crear una aplicació que ens permeti d'una forma ràpida i eficient, el processament dels resultats obtinguts per un eina de simulació d'ecosistemes naturals anomenada PlinguaCore .L'objectiu d'aquest tractament és doble. En primer lloc, dissenyar una API que ens permeti de forma eficient processar la gran quantitat de dades generades per simulador d'ecosistemes PlinguaCore. En segon lloc, fer que aquesta API es pugui integrar en altres aplicacions, tant de tractament de dades, com de cal·libració dels models.
Resumo:
Forest fire models have been widely studied from the context of self-organized criticality and from the ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have interesting applications in biology and physics. We propose here a model for fire propagation in a forest by using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are analyzed in detail
Resumo:
The radiation distribution function used by Domínguez and Jou [Phys. Rev. E 51, 158 (1995)] has been recently modified by Domínguez-Cascante and Faraudo [Phys. Rev. E 54, 6933 (1996)]. However, in these studies neither distribution was written in terms of directly measurable quantities. Here a solution to this problem is presented, and we also propose an experiment that may make it possible to determine the distribution function of nonequilibrium radiation experimentally. The results derived do not depend on a specific distribution function for the matter content of the system
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
A variational method for Hamiltonian systems is analyzed. Two different variationalcharacterization for the frequency of nonlinear oscillations is also suppliedfor non-Hamiltonian systems
Resumo:
Estudi realitzat a partir d’una estada a la Stanford University School of Medicine. Division of Radiation Oncology, Estats Units, entre 2010 i 2012. Durant els dos anys de beca postdoctoral he estat treballant en dos projectes diferents. En primer lloc, i com a continuació d'estudis previs del grup, volíem estudiar la causa de les diferències en nivells d'hipòxia que havíem observat en models de càncer de pulmó. La nostra hipòtesi es basava en el fet que aquestes diferències es devien a la funcionalitat de la vasculatura. Vam utilitzar dos models preclínics: un en què els tumors es formaven espontàniament als pulmons i l'altre on nosaltres injectàvem les cèl•lules de manera subcutània. Vam utilitzar tècniques com la ressonància magnètica dinàmica amb agent de contrast (DCE-MRI) i l'assaig de perfusió amb el Hoeschst 33342 i ambdues van demostrar que la funcionalitat de la vasculatura dels tumors espontanis era molt més elevada comparada amb la dels tumors subcutanis. D'aquest estudi, en podem concloure que les diferències en els nivells d'hipòxia en els diferents models tumorals de càncer de pulmó podrien ser deguts a la variació en la formació i funcionalitat de la vasculatura. Per tant, la selecció de models preclínics és essencial, tant pels estudi d'hipòxia i angiogènesi, com per a teràpies adreçades a aquests fenòmens. L'altre projecte que he estat desenvolupant es basa en l'estudi de la radioteràpia i els seus possibles efectes a l’hora de potenciar l'autoregeneració del tumor a partir de les cèl•lules tumorals circulants (CTC). Aquest efecte s'ha descrit en alguns models tumorals preclínics. Per tal de dur a terme els nostres estudis, vam utilitzar una línia tumoral de càncer de mama de ratolí, marcada permanentment amb el gen de Photinus pyralis o sense marcar i vam fer estudis in vitro i in vivo. Ambdós estudis han demostrat que la radiació tumoral promou la invasió cel•lular i l'autoregeneració del tumor per CTC. Aquest descobriment s'ha de considerar dins d'un context de radioteràpia clínica per tal d'aconseguir el millor tractament en pacients amb nivells de CTC elevats.
Resumo:
The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).