168 resultados para Cooperation networks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an optimized model to support QoS by mean of Congestion minimization on LSPs (Label Switching Path). In order to perform this model, we start from a CFA (Capacity and Flow Allocation) model. As this model does not consider the buffer size to calculate the capacity cost, our model- named BCA (Buffer Capacity Allocation)- take into account this issue and it improve the CFA performance. To test our proposal, we perform several simulations; results show that BCA model minimizes LSP congestion and uniformly distributes flows on the network

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquest treball presentem dues caracteritzacions de dos valors diferents en el marc dels jocs coalicionals amb cooperació restringida. Les restriccions són introduïdes com una seqüència finita de particions del conjunt del jugadors, de manera que cada una d'elles eés més grollera que l'anterior, formant així una estructura amb diferents nivells d'unions a priori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capital intensive industries in specialized niches of production have constituted solid ground for family firms in Spain , as evidenced by the experience of the iron and steel wire industries between 1870 and 2000. The embeddedness of these firms in their local and regional environments have allowed the creation of networks that, together with favourable institutional conditions, significantly explain the dominance of family entrepreneurship in iron and steel wire manufacturing in Spain, until the end of the 20 th century. Dominance of family firms at the regional level has not been not an obstacle for innovation in wire manufacturing in Spain, which has taken place even when institutional conditions blocked innovation and traditional networking. Therefore, economic theories about the difficulties dynastic family firms may have to perform appropriately in science-based industries must be questioned

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simple model of communication in networks with hierarchical branching. We analyze the behavior of the model from the viewpoint of critical systems under different situations. For certain values of the parameters, a continuous phase transition between a sparse and a congested regime is observed and accurately described by an order parameter and the power spectra. At the critical point the behavior of the model is totally independent of the number of hierarchical levels. Also scaling properties are observed when the size of the system varies. The presence of noise in the communication is shown to break the transition. The analytical results are a useful guide to forecasting the main features of real networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Random scale-free networks have the peculiar property of being prone to the spreading of infections. Here we provide for the susceptible-infected-susceptible model an exact result showing that a scale-free degree distribution with diverging second moment is a sufficient condition to have null epidemic threshold in unstructured networks with either assortative or disassortative mixing. Degree correlations result therefore irrelevant for the epidemic spreading picture in these scale-free networks. The present result is related to the divergence of the average nearest neighbors degree, enforced by the degree detailed balance condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a theoretical approach to percolation in random clustered networks. We find that, although clustering in scale-free networks can strongly affect some percolation properties, such as the size and the resilience of the giant connected component, it cannot restore a finite percolation threshold. In turn, this implies the absence of an epidemic threshold in this class of networks, thus extending this result to a wide variety of real scale-free networks which shows a high level of transitivity. Our findings are in good agreement with numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a full theoretical approach to clustering in complex networks. A key concept is introduced, the edge multiplicity, that measures the number of triangles passing through an edge. This quantity extends the clustering coefficient in that it involves the properties of two¿and not just one¿vertices. The formalism is completed with the definition of a three-vertex correlation function, which is the fundamental quantity describing the properties of clustered networks. The formalism suggests different metrics that are able to thoroughly characterize transitive relations. A rigorous analysis of several real networks, which makes use of this formalism and the metrics, is also provided. It is also found that clustered networks can be classified into two main groups: the weak and the strong transitivity classes. In the first class, edge multiplicity is small, with triangles being disjoint. In the second class, edge multiplicity is high and so triangles share many edges. As we shall see in the following paper, the class a network belongs to has strong implications in its percolation properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a general theory for percolation in directed random networks with arbitrary two-point correlations and bidirectional edgesthat is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The percolation properties of clustered networks are analyzed in detail. In the case of weak clustering, we present an analytical approach that allows us to find the critical threshold and the size of the giant component. Numerical simulations confirm the accuracy of our results. In more general terms, we show that weak clustering hinders the onset of the giant component whereas strong clustering favors its appearance. This is a direct consequence of the differences in the k-core structure of the networks, which are found to be totally different depending on the level of clustering. An empirical analysis of a real social network confirms our predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generator of random networks where both the degree-dependent clustering coefficient and the degree distribution are tunable. Following the same philosophy as in the configuration model, the degree distribution and the clustering coefficient for each class of nodes of degree k are fixed ad hoc and a priori. The algorithm generates corresponding topologies by applying first a closure of triangles and second the classical closure of remaining free stubs. The procedure unveils an universal relation among clustering and degree-degree correlations for all networks, where the level of assortativity establishes an upper limit to the level of clustering. Maximum assortativity ensures no restriction on the decay of the clustering coefficient whereas disassortativity sets a stronger constraint on its behavior. Correlation measures in real networks are seen to observe this structural bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention on the interplay between topological disorder and synchronization features of networks. First, we analyze synchronization time T in random networks, and find a scaling law which relates T to network connectivity. Then, we compare synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than a disordered network. This fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.