87 resultados para Bayesian decision boundaries
Resumo:
Reinsurance is one of the tools that an insurer can use to mitigate the underwriting risk and then to control its solvency. In this paper, we focus on the proportional reinsurance arrangements and we examine several optimization and decision problems of the insurer with respect to the reinsurance strategy. To this end, we use as decision tools not only the probability of ruin but also the random variable deficit at ruin if ruin occurs. The discounted penalty function (Gerber & Shiu, 1998) is employed to calculate as particular cases the probability of ruin and the moments and the distribution function of the deficit at ruin if ruin occurs.
Resumo:
Alpine tree-line ecotones are characterized by marked changes at small spatial scales that may result in a variety of physiognomies. A set of alternative individual-based models was tested with data from four contrasting Pinus uncinata ecotones in the central Spanish Pyrenees to reveal the minimal subset of processes required for tree-line formation. A Bayesian approach combined with Markov chain Monte Carlo methods was employed to obtain the posterior distribution of model parameters, allowing the use of model selection procedures. The main features of real tree lines emerged only in models considering nonlinear responses in individual rates of growth or mortality with respect to the altitudinal gradient. Variation in tree-line physiognomy reflected mainly changes in the relative importance of these nonlinear responses, while other processes, such as dispersal limitation and facilitation, played a secondary role. Different nonlinear responses also determined the presence or absence of krummholz, in agreement with recent findings highlighting a different response of diffuse and abrupt or krummholz tree lines to climate change. The method presented here can be widely applied in individual-based simulation models and will turn model selection and evaluation in this type of models into a more transparent, effective, and efficient exercise.
Resumo:
A new method for decision making that uses the ordered weighted averaging (OWA) operator in the aggregation of the information is presented. It is used a concept that it is known in the literature as the index of maximum and minimum level (IMAM). This index is based on distance measures and other techniques that are useful for decision making. By using the OWA operator in the IMAM, we form a new aggregation operator that we call the ordered weighted averaging index of maximum and minimum level (OWAIMAM) operator. The main advantage is that it provides a parameterized family of aggregation operators between the minimum and the maximum and a wide range of special cases. Then, the decision maker may take decisions according to his degree of optimism and considering ideals in the decision process. A further extension of this approach is presented by using hybrid averages and Choquet integrals. We also develop an application of the new approach in a multi-person decision-making problem regarding the selection of strategies.
Resumo:
The present study evaluates the performance of four methods for estimating regression coefficients used to make statistical decisions regarding intervention effectiveness in single-case designs. Ordinary least squares estimation is compared to two correction techniques dealing with general trend and one eliminating autocorrelation whenever it is present. Type I error rates and statistical power are studied for experimental conditions defined by the presence or absence of treatment effect (change in level or in slope), general trend, and serial dependence. The results show that empirical Type I error rates do not approximate the nominal ones in presence of autocorrelation or general trend when ordinary and generalized least squares are applied. The techniques controlling trend show lower false alarm rates, but prove to be insufficiently sensitive to existing treatment effects. Consequently, the use of the statistical significance of the regression coefficients for detecting treatment effects is not recommended for short data series.
Resumo:
Control of brown spot of pear requires fungicide treatments of pear trees during the growing season. Scheduling fungicide sprays with the Brown spot of pear forecasting system (BSPcast) provides significantfungicide savings but does not increase the efficacy of disease control. Modifications in BSPcast wereintroduced in order to increase system performance. The changes consisted of: (1) the use of a daily infectionrisk (Rm≥0.2) instead of the 3-day cumulative risk (CR≥0.4) to guide the fungicide scheduling, and (2) theinclusion of the effect of relative humidity during interrupted wetness periods. Trials were performed during2 years in an experimental pear orchard in Spain. The modifications introduced did not result in increaseddisease control efficacy, compared with the original BSPcast system. In one year, no reduction in the numberof fungicide applications was obtained using the modified BSPcast system in comparison to the original system, but in the second year the number of treatments was reduced from 15 to 13. The original BSPcast model overestimated the daily infection risk in 6.5% of days with wetness periods with low relative humidity during the wetness interruption, and in these cases the modified version was more adequate
Resumo:
This study extends the standard econometric treatment of appellate court outcomes by 1) considering the role of decision-maker effort and case complexity, and 2) adopting a multi-categorical selection process of appealed cases. We find evidence of appellate courts being affected by both the effort made by first-stage decision makers and case complexity. This illustrates the value of widening the narrowly defined focus on heterogeneity in individual-specific preferences that characterises many applied studies on legal decision-making. Further, the majority of appealed cases represent non-random sub-samples and the multi-categorical selection process appears to offer advantages over the more commonly used dichotomous selection models.
Resumo:
Health and inequalities in health among inhabitants of European cities are of major importance for European public health and there is great interest in how different health care systems in Europe perform in the reduction of health inequalities. However, evidence on the spatial distribution of cause-specific mortality across neighbourhoods of European cities is scarce. This study presents maps of avoidable mortality in European cities and analyses differences in avoidable mortality between neighbourhoods with different levels of deprivation. Methods: We determined the level of mortality from 14 avoidable causes of death for each neighbourhood of 15 large cities in different European regions. To address the problems associated with Standardised Mortality Ratios for small areas we smooth them using the Bayesian model proposed by Besag, York and Mollié. Ecological regression analysis was used to assess the association between social deprivation and mortality. Results: Mortality from avoidable causes of death is higher in deprived neighbourhoods and mortality rate ratios between areas with different levels of deprivation differ between gender and cities. In most cases rate ratios are lower among women. While Eastern and Southern European cities show higher levels of avoidable mortality, the association of mortality with social deprivation tends to be higher in Northern and lower in Southern Europe. Conclusions: There are marked differences in the level of avoidable mortality between neighbourhoods of European cities and the level of avoidable mortality is associated with social deprivation. There is no systematic difference in the magnitude of this association between European cities or regions. Spatial patterns of avoidable mortality across small city areas can point to possible local problems and specific strategies to reduce health inequality which is important for the development of urban areas and the well-being of their inhabitants
Resumo:
Real-time predictions are an indispensable requirement for traffic management in order to be able to evaluate the effects of different available strategies or policies. The combination of predicting the state of the network and the evaluation of different traffic management strategies in the short term future allows system managers to anticipate the effects of traffic control strategies ahead of time in order to mitigate the effect of congestion. This paper presents the current framework of decision support systems for traffic management based on short and medium-term predictions and includes some reflections on their likely evolution, based on current scientific research and the evolution of the availability of new types of data and their associated methodologies.
Resumo:
This article is the result of an ongoing research into a variety of features of Spanish local government. It aims, in particular, at providing a profile of the tools implemented by local authorities to improve local democracy in Catalonia. The main hypothesis of the work is that, even though the Spanish local model is constrained by a shared and unique set of legal regulations, local institutions in Catalonia have developed their own model of local participation. And the range of instruments like these is still now increasing. More specifically, the scope of this research is twofold. On the one hand, different types of instruments for public deliberation in the Catalan local administration system are identified and presented, based on the place they take in the policy cycle. On the other hand, we focus on policy domains and the quality of the decision-making processes. Researching the stability of the participation tools or whether local democracy prefers more 'ad hoc' processes allows us to analyze the boundaries/limits of local democracy in Catalonia. The main idea underlying this paper is that, despite the existence of a single legal model regulating municipalities in Catalonia, local authorities tend to use their legally granted selfmanagement capacities to design their own instruments which end up presenting perceivable distinct features, stressing democracy in different policy domains, and in diverse policy cycles. Therefore, this paper is intended to identify such models and to provide factors (variables) so that an explanatory model can be built.
Resumo:
Automobile bodily injury disputes represent one of the main causes of litigation faced by Spanish Courts. In this paper a multinomial model is implemented to analyse which factors determine the decision to appeal against the verdicts of trial courts. Use of a dataset of motor insurance claims revealed differences between the determinants of a claimant’s decision to appeal and those of insurers. Among other results it is shown that discrepancies regarding the permanent disability sustained affect the insurer’s decision to appeal. In contrast, the claimant pays more attention to differences in the stated temporary disability. Conclusions are drawn regarding which factors could reduce the percentage of appealed cases.
Resumo:
As wireless communications evolve towards heterogeneousnetworks, mobile terminals have been enabled tohandover seamlessly from one network to another. At the sametime, the continuous increase in the terminal power consumptionhas resulted in an ever-decreasing battery lifetime. To that end,the network selection is expected to play a key role on howto minimize the energy consumption, and thus to extend theterminal lifetime. Hitherto, terminals select the network thatprovides the highest received power. However, it has been provedthat this solution does not provide the highest energy efficiency.Thus, this paper proposes an energy efficient vertical handoveralgorithm that selects the most energy efficient network thatminimizes the uplink power consumption. The performance of theproposed algorithm is evaluated through extensive simulationsand it is shown to achieve high energy efficiency gains comparedto the conventional approach.
Resumo:
This paper presents a procedure that allows us to determine the preference structures(PS) associated to each of the different groups of actors that can be identified in a groupdecision making problem with a large number of individuals. To that end, it makesuse of the Analytic Hierarchy Process (AHP) (Saaty, 1980) as the technique to solvediscrete multicriteria decision making problems. This technique permits the resolutionof multicriteria, multienvironment and multiactor problems in which subjective aspectsand uncertainty have been incorporated into the model, constructing ratio scales correspondingto the priorities relative to the elements being compared, normalised in adistributive manner (wi = 1). On the basis of the individuals’ priorities we identifydifferent clusters for the decision makers and, for each of these, the associated preferencestructure using, to that end, tools analogous to those of Multidimensional Scaling.The resulting PS will be employed to extract knowledge for the subsequent negotiationprocesses and, should it be necessary, to determine the relative importance of thealternatives being compared using anyone of the existing procedures