78 resultados para AQUATIC MACROPHYTES
Resumo:
We have pragmatic and ethical obligations to conserve rivers and their biodiversity. This chapter outlines how and why river conservation is important. To make a difference, we must act as individuals and groups, using water wisely and protecting vulnerable assets such as water quality, riparian zones and aquatic biodiversity
Resumo:
Chironomidae spatial distribution was investigated at 63 near-pristine sites in 22 catchments of the Iberian Mediterranean coast. We used partial redundancy analysis to study Chironomidae community responses to a number of environmental factors acting at several spatial scales. The percentage of variation explained by local factors (23.3%) was higher than that explained by geographical (8.5%) or regional factors(8%). Catchment area, longitude, pH, % siliceous rocks in the catchment, and altitude were the best predictors of Chironomidae assemblages. We used a k-means cluster analysis to classified sites into 3 major groups based on Chironomidae assemblages. These groups were explained mainly by longitudinal zonation and geographical position, and were defined as 1) siliceous headwater streams, 2) mid-altitude streams with small catchment areas, and 3) medium-sized calcareous streams. Distinct species assemblages with associated indicator taxa were established for each stream category using IndVal analysis. Species responses to previously identified key environmental variables were determined, and optima and tolerances were established by weighted average regression. Distinct ecological requirements were observed among genera and among species of the same genus. Some genera were restricted to headwater systems (e.g., Diamesa), whereas others (e.g., Eukiefferiella) had wider ecological preferences but with distinct distributions among congenerics. In the present period of climate change, optima and tolerances of species might be a useful tool to predict responses of different species to changes in significant environmental variables, such as temperature and hydrology.
Resumo:
Monitoring of the 'ecological water quality' in 'Aiguamolls de l’Empordà' Natural Park was carried out between September 1996 and August 1997 . The aim of this sampling programme was to design a simple method for rapid detect changes in water quality due to human activity. These include flow regulation by the Park management, nutrient entries from effluents of a nearby wastewater treatment plant or agricultural fertilising. The proposed method is based on the analysis of the abundance of characteristic taxonomic groups of aquatic invertebrates (heleoplankton). The simplicity of the method is ensured by the use of large taxa which are easier to recognise than species. The functioning of aquatic systems has been modelled by means of correspondence analysis between samples and taxa. Results can be summerized in five environmental conditions with a regular community structure. Dominated by one taxon: cladocerans, ostracods, calanoids, cyclopoids and harpacticoids. The dynamics of both freshwater and brackish lagoons can be modelled as displacements between these five groups of environmental conditions. Nevertheless, the “calanoids situation” and the “harpacticoids situation” occur mainly in brackish lagoons, whereas the “cladocerans situation” occurs mainly in freshwater. The four principal axes of data variation have been respectively identified as nutrient turnover rate, hypertrophy, degree of mineralization of the organic matter and eutrophy. The use of these taxa has been validated by comparison with a model obtained from the species. We conclude that in a highly fluctuating system such as the one here, only persistent situations of eutrophy or hypertrophy must be equated to low 'ecological water quality'