85 resultados para Ángel González
Resumo:
A Reply to the Comment by K. E. Nagaev
Resumo:
Abstract Background: Little is known about how sitting time, alone or in combination with markers of physical activity (PA), influences mental well-being and work productivity. Given the need to develop workplace PA interventions that target employees’ health related efficiency outcomes; this study examined the associations between self-reported sitting time, PA, mental well-being and work productivity in office employees. Methods: Descriptive cross-sectional study. Spanish university office employees (n = 557) completed a survey measuring socio-demographics, total and domain specific (work and travel) self-reported sitting time, PA (International Physical Activity Questionnaire short version), mental well-being (Warwick-Edinburg Mental Well-Being Scale) and work productivity (Work Limitations Questionnaire). Multivariate linear regression analyses determined associations between the main variables adjusted for gender, age, body mass index and occupation. PA levels (low, moderate and high) were introduced into the model to examine interactive associations. Results: Higher volumes of PA were related to higher mental well-being, work productivity and spending less time sitting at work, throughout the working day and travelling during the week, including the weekends (p < 0.05). Greater levels of sitting during weekends was associated with lower mental well-being (p < 0.05). Similarly, more sitting while travelling at weekends was linked to lower work productivity (p < 0.05). In highly active employees, higher sitting times on work days and occupational sitting were associated with decreased mental well-being (p < 0.05). Higher sitting times while travelling on weekend days was also linked to lower work productivity in the highly active (p < 0.05). No significant associations were observed in low active employees. Conclusions: Employees’ PA levels exerts different influences on the associations between sitting time, mental well-being and work productivity. The specific associations and the broad sweep of evidence in the current study suggest that workplace PA strategies to improve the mental well-being and productivity of all employees should focus on reducing sitting time alongside efforts to increase PA.
Resumo:
Current technology trends in medical device industry calls for fabrication of massive arrays of microfeatures such as microchannels on to nonsilicon material substrates with high accuracy, superior precision, and high throughput. Microchannels are typical features used in medical devices for medication dosing into the human body, analyzing DNA arrays or cell cultures. In this study, the capabilities of machining systems for micro-end milling have been evaluated by conducting experiments, regression modeling, and response surface methodology. In machining experiments by using micromilling, arrays of microchannels are fabricated on aluminium and titanium plates, and the feature size and accuracy (width and depth) and surface roughness are measured. Multicriteria decision making for material and process parameters selection for desired accuracy is investigated by using particle swarm optimization (PSO) method, which is an evolutionary computation method inspired by genetic algorithms (GA). Appropriate regression models are utilized within the PSO and optimum selection of micromilling parameters; microchannel feature accuracy and surface roughness are performed. An analysis for optimal micromachining parameters in decision variable space is also conducted. This study demonstrates the advantages of evolutionary computing algorithms in micromilling decision making and process optimization investigations and can be expanded to other applications
Resumo:
Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.
Resumo:
Purpose Encouraging office workers to ‘sit less and move more’ encompasses two public health priorities. However, there is little evidence on the effectiveness of workplace interventions for reducing sitting, even less about the longer term effects of such interventions and still less on dual-focused interventions. This study assessed the short and mid-term impacts of a workplace web-based intervention (Walk@WorkSpain, W@WS; 2010-11) on self-reported sitting time, step counts and physical risk factors (waist circumference, BMI, blood pressure) for chronic disease. Methods Employees at six Spanish university campuses (n=264; 42±10 years; 171 female) were randomly assigned by worksite and campus to an Intervention (used W@WS; n=129; 87 female) or a Comparison group (maintained normal behavior; n=135; 84 female). This phased, 19-week program aimed to decrease occupational sitting time through increased incidental movement and short walks. A linear mixed model assessed changes in outcome measures between the baseline, ramping (8 weeks), maintenance (11 weeks) and followup (two months) phases for Intervention versus Comparison groups.A significant 2 (group) × 2 (program phases) interaction was found for self-reported occupational sitting (F[3]=7.97, p=0.046), daily step counts (F[3]=15.68, p=0.0013) and waist circumference (F[3]=11.67, p=0.0086). The Intervention group decreased minutes of daily occupational sitting while also increasing step counts from baseline (446±126; 8,862±2,475) through ramping (+425±120; 9,345±2,435), maintenance (+422±123; 9,638±3,131) and follow-up (+414±129; 9,786±3,205). In the Comparison group, compared to baseline (404±106), sitting time remained unchanged through ramping and maintenance, but decreased at follow-up (-388±120), while step counts diminished across all phases. The Intervention group significantly reduced waist circumference by 2.1cms from baseline to follow-up while the Comparison group reduced waist circumference by 1.3cms over the same period. Conclusions W@WSis a feasible and effective evidence-based intervention that can be successfully deployed with sedentary employees to elicit sustained changes on “sitting less and moving more”.
Resumo:
The aim of our study was to assess the diagnostic usefulness of the gray level parameters to distinguish osteolytic lesions using radiological images. Materials and Methods: A retrospective study was carried out. A total of 76 skeletal radiographs of osteolytic metastases and 67 radiographs of multiple myeloma were used. The cases were classified into nonflat (MM1 and OL1) and flat bones (MM2 and OL2). These radiological images were analyzed by using a computerized method. The parameters calculated were mean, standard deviation, and coefficient of variation (MGL, SDGL, and CVGL) based on gray level histogram analysis of a region-of-interest.Diagnostic utility was quantified bymeasurement of parameters on osteolyticmetastases andmultiplemyeloma, yielding quantification of area under the receiver operating characteristic (ROC) curve (AUC). Results: Flat bone groups (MM2 and OL2) showed significant differences in mean values of MGL ( = 0.048) and SDGL ( = 0.003). Their corresponding values of AUC were 0.758 for MGL and 0.883 for SDGL in flat bones. In nonflat bones these gray level parameters do not show diagnostic ability. Conclusion: The gray level parametersMGL and SDGL show a good discriminatory diagnostic ability to distinguish between multiple myeloma and lytic metastases in flat bones.
Resumo:
Ewing sarcoma or primitive neuroectodermal tumor (PNET) of bone is the second most common pediatric malignant bone tumor. The median age at diagnosis is 15 years and there is a male predilection of 1.5/1. The authors present the case of a 14-year-old boy with Ewing sarcoma situated on the left ninth rib which was being investigated for respiratory tract infection. Pleurisy is the most common misdiagnosis. Our case illustrates the importance of recognizing exceptional features when interpreting FDG PET or scintigraphy to prevent the misinterpretation of metastases as other etiologies, such as infection.
Resumo:
We present a 53-year-old man with a vocal cord paralysis observed as a primary manifestation of lung carcinoma. Tc-99m MDP whole body bone scan was performed and resulted in a normal scintiscan. The bone scan did not reveal any suspicious foci of uptake. The possibility of bone metastasis was taken into consideration. A whole body F18-FDG-PET scan showed intense uptake in the left upper lung corresponding to the primary tumor. A bronchial biopsy confirmed infiltration by small cell lung carcinoma (SCLC). SCLC is composed of poorly differentiated, rapidly growing cells with diseases usually occurring centrally rather than peripherally. It metastasizes early. The whole-body F18-FDG-PET scan clearly demonstrated a focus of increased uptake in the second lumbar vertebral body suspicious for osteolytic metastasis. A lytic bone metastasis was confirmed by MRI. The patient then received therapy and underwent follow up abdominal CT. The scan showed blastic changes in the L2 vertebra suggesting response to treatment.
Resumo:
Bread is one of the most widely consumed foods. Its impact on human health is currently of special interest for researchers. We aimed to identify biomarkers of bread consumption by applying a nutrimetabolomic approach to a free-living population. An untargeted HPLC q-TOF-MS and multivariate analysis was applied to human urine from 155 subjects stratified by habitual bread consumption in three groups: non-consumers of bread (n = 56), white-bread consumers (n = 48) and whole-grain bread consumers (n = 51). The most differential metabolites (variable importance for projection ≥1.5) included compounds originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol metabolites, and compounds produced by gut microbiota (such as enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-acetylcitrulline were also tentatively identified. In order to combine multiple metabolites in a model to predict bread consumption, a stepwise logistic regression analysis was used. Receiver operating curves were constructed to evaluate the global performance of individual metabolites and their combination. The area under the curve values [AUC (95 % CI)] of combined models ranged from 77.8 % (69.1 86.4 %) to 93.7 % (89.4 98.1 %), whereas the AUC for the metabolites included in the models had weak values when they were evaluated individually: from 58.1 % (46.6 69.7 %) to 78.4 % (69.8 87.1 %). Our study showed that a daily bread intake significantly impacted on the urinary metabolome, despite being examined under uncontrolled free-living conditions. We further concluded that a combination of several biomarkers of exposure is better than a single biomarker for the predictive ability of discriminative analysis.
Resumo:
Bread is one of the most widely consumed foods. Its impact on human health is currently of special interest for researchers. We aimed to identify biomarkers of bread consumption by applying a nutrimetabolomic approach to a free-living population. An untargeted HPLC q-TOF-MS and multivariate analysis was applied to human urine from 155 subjects stratified by habitual bread consumption in three groups: non-consumers of bread (n = 56), white-bread consumers (n = 48) and whole-grain bread consumers (n = 51). The most differential metabolites (variable importance for projection ≥1.5) included compounds originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol metabolites, and compounds produced by gut microbiota (such as enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-acetylcitrulline were also tentatively identified. In order to combine multiple metabolites in a model to predict bread consumption, a stepwise logistic regression analysis was used. Receiver operating curves were constructed to evaluate the global performance of individual metabolites and their combination. The area under the curve values [AUC (95 % CI)] of combined models ranged from 77.8 % (69.1 86.4 %) to 93.7 % (89.4 98.1 %), whereas the AUC for the metabolites included in the models had weak values when they were evaluated individually: from 58.1 % (46.6 69.7 %) to 78.4 % (69.8 87.1 %). Our study showed that a daily bread intake significantly impacted on the urinary metabolome, despite being examined under uncontrolled free-living conditions. We further concluded that a combination of several biomarkers of exposure is better than a single biomarker for the predictive ability of discriminative analysis.