107 resultados para wave-front distortion
Resumo:
Through an imaginary change of coordinates in the Galilei algebra in 4 space dimensions and making use of an original idea of Dirac and Lvy-Leblond, we are able to obtain the relativistic equations of Dirac and of Bargmann and Wigner starting with the (Galilean-invariant) Schrdinger equation.
Resumo:
The tunneling approach to the wave function of the Universe has been recently criticized by Bousso and Hawking who claim that it predicts a catastrophic instability of de Sitter space with respect to pair production of black holes. We show that this claim is unfounded. First, we argue that different horizon size regions in de Sitter space cannot be treated as independently created, as they contend. And second, the WKB tunneling wave function is not simply the inverse of the Hartle-Hawking one, except in very special cases. Applied to the related problem of pair production of massive particles, we argue that the tunneling wave function leads to a small constant production rate, and not to a catastrophe as the argument of Bousso and Hawking would suggest.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monochromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.
Resumo:
We study the mean-first-passage-time problem for systems driven by the coin-toss square-wave signal. Exact analytic solutions are obtained for the driftless case. We also obtain approximate solutions for the potential case. The mean-first-passage time exhibits discontinuities and a remarkable nonsmooth oscillatory behavior which, to our knowledge, has not been observed for other kinds of driving noise.
Resumo:
Extracting a bond-length-dependent Heisenberg-like Hamiltonian from the potential-energy surfaces of the two lowest states of ethylene, it is possible to study the geometry of polyacetylene by minimization of the cohesive energy, using both variational-cluster and Rayleigh-Schrödinger perturbative expansions. The dimerization amplitude is satisfactorily reproduced. Optimizing the variational-cluster-expansion total energy with the equal-bond-length constraint, the barrier to reversal of alternation is obtained. The alternating-to-regular phase transition is treated from the Néel-state starting function and appears to be of second order.
Resumo:
The front form and the point form of dynamics are studied in the framework of predictive relativistic mechanics. The non-interaction theorem is proved when a Poincar-invariant Hamiltonian formulation with canonical position coordinates is required.
Resumo:
A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modulation consists of a spatial variation of the local front velocity in the transverse direction to that of the front propagation. We study analytically and numerically the final steady-state velocity and shape of the front, resulting from a nontrivial interplay between the local curvature effects and the global competition process between different maxima of the control parameter. The transient dynamics of the process is also studied numerically and analytically by means of singular perturbation techniques.
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
Rotating scroll waves are dynamical spatiotemporal structures characteristic of three-dimensional active media. It is well known that, under low excitability conditions, scroll waves develop an intrinsically unstable dynamical regime that leads to a highly disorganized pattern of wave propagation. Such a ¿turbulent¿ state bears some resemblance to fibrillation states in cardiac tissue. We show here that this unstable regime can be controlled by using a spatially distributed random forcing superimposed on a control parameter of the system. Our results are obtained from numerical simulations but an explicit analytical argument that rationalizes our observations is also presented.
Resumo:
A general dynamical model for the first-order optical Fréedericksz transition incorporating spatial transverse inhomogeneities and hydrodynamic effects is discussed in the framework of a time-dependent Ginzburg-Landau model. The motion of an interface between two coexisting states with different director orientations is considered. A uniformly translating front solution of the dynamical equations for the motion of that interface is described.
Resumo:
We consider an irreversible autocatalytic conversion reaction A+B->2A under subdiffusion described by continuous-time random walks. The reactants transformations take place independently of their motion and are described by constant rates. The analog of this reaction in the case of normal diffusion is described by the Fisher-Kolmogorov-Petrovskii-Piskunov equation leading to the existence of a nonzero minimal front propagation velocity, which is really attained by the front in its stable motion. We show that for subdiffusion, this minimal propagation velocity is zero, which suggests propagation failure.
Resumo:
A study of a stable front propagating in a turbulent medium is presented. The front is generated through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a Langevin equation. Numerical simulations indicate the presence of two different dynamical regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring intensities appropriate to each case are found and fitted when possible according to theoretically predicted laws. Different turbulent spectra are considered.