245 resultados para teoria quântica da medida
Resumo:
We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.
Resumo:
Given a Lagrangian system depending on the position derivatives of any order, and assuming that certain conditions are satisfied, a second-order differential system is obtained such that its solutions also satisfy the Euler equations derived from the original Lagrangian. A generalization of the singular Lagrangian formalism permits a reduction of order keeping the canonical formalism in sight. Finally, the general results obtained in the first part of the paper are applied to Wheeler-Feynman electrodynamics for two charged point particles up to order 1/c4.
Resumo:
We develop a covariant quantum theory of fluctuations on vacuum domain walls and strings. The fluctuations are described by a scalar field defined on the classical world sheet of the defects. We consider the following cases: straight strings and planar walls in flat space, true vacuum bubbles nucleating in false vacuum, and strings and walls nucleating during inflation. The quantum state for the perturbations is constructed so that it respects the original symmetries of the classical solution. In particular, for the case of vacuum bubbles and nucleating strings and walls, the geometry of the world sheet is that of a lower-dimensional de Sitter space, and the problem reduces to the quantization of a scalar field of tachyonic mass in de Sitter space. In all cases, the root-mean-squared fluctuation is evaluated in detail, and the physical implications are briefly discussed.
Resumo:
We evaluate the probability that a loop of string that has spontaneously nucleated during inflation will form a black hole upon collapse, after the end of inflation. We then use the observational bounds on the density of primordial black holes to put constraints on the parameters of the model. Combining these constraints with current upper limits on the expansion rate during inflation, we conclude that the density of black holes formed from nucleating strings is too low to be observed. Also, constraints on domain wall nucleation and monopole pair production during inflation are briefly discussed.
Resumo:
The issue of de Sitter invariance for a massless minimally coupled scalar field is examined. Formally, it is possible to construct a de Sitterinvariant state for this case provided that the zero mode of the field is quantized properly. Here we take the point of view that this state is physically acceptable, in the sense that physical observables can be computed and have a reasonable interpretation. In particular, we use this vacuum to derive a new result: that the squared difference between the field at two points along a geodesic observers spacetime path grows linearly with the observers proper time for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism to compute the renormalized expectation value of the energy-momentum tensor, both in the O(4)-invariant states introduced by Allen and Follaci, and in the de Sitterinvariant vacuum. We find that the vacuum energy density in the O(4)-invariant case is larger than in the de Sitterinvariant case.
Resumo:
The tunneling approach to the wave function of the Universe has been recently criticized by Bousso and Hawking who claim that it predicts a catastrophic instability of de Sitter space with respect to pair production of black holes. We show that this claim is unfounded. First, we argue that different horizon size regions in de Sitter space cannot be treated as independently created, as they contend. And second, the WKB tunneling wave function is not simply the inverse of the Hartle-Hawking one, except in very special cases. Applied to the related problem of pair production of massive particles, we argue that the tunneling wave function leads to a small constant production rate, and not to a catastrophe as the argument of Bousso and Hawking would suggest.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
We point out that using the heat kernel on a cone to compute the first quantum correction to the entropy of Rindler space does not yield the correct temperature dependence. In order to obtain the physics at arbitrary temperature one must compute the heat kernel in a geometry with different topology (without a conical singularity). This is done in two ways, which are shown to agree with computations performed by other methods. Also, we discuss the ambiguities in the regularization procedure and their physical consequences.
Resumo:
ty that low-energy effective field theory could be sufficient to understand the microscopic degrees of freedom underlying black hole entropy. We propose a qualitative physical picture in which black hole entropy refers to a space of quasicoherent states of infalling matter, together with its gravitational field. We stress that this scenario might provide a low-energy explanation of both the black hole entropy and the information puzzle.
Resumo:
The recently proposed correspondence principle of Horowitz and Polchinski provides a concrete means to relate (among others) black holes with electric Neveu-SchwarzNeveu-Schwarz charges to fundamental strings and correctly match their entropies. We further test this correspondence by examining the greybody factors in the absorption rates of neutral, minimally coupled scalars by a near extremal black hole. Perhaps surprisingly, the results disagree in general with the absorption by weakly coupled strings. Though this does not disprove the correspondence, it indicates that it might not be simple in this region of the black hole parameter space.
Resumo:
We compute the properties of a class of charged black holes in antide Sitter space-time, in diverse dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravities, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermodynamic phase structures for these systems, which display classic critical phenomena, including structures isomorphic to the van der WaalsMaxwell liquid-gas system. In that case, the phases are controlled by the universal cusp and swallowtail shapes familiar from catastrophe theory. All of the thermodynamics is consistent with field theory interpretations via holography, where the dual field theories can sometimes be found on the world volumes of coincident rotating branes.
Resumo:
We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.
Resumo:
It is well known that radiative corrections evaluated in nontrivial backgrounds lead to effective dispersion relations which are not Lorentz invariant. Since gravitational interactions increase with energy, gravity-induced radiative corrections could be relevant for the trans-Planckian problem. As a first step to explore this possibility, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly, however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.
Resumo:
The Lorentz-Dirac equation is not an unavoidable consequence of solely linear and angular momenta conservation for a point charge. It also requires an additional assumption concerning the elementary character of the charge. We here use a less restrictive elementarity assumption for a spinless charge and derive a system of conservation equations that are not properly the equation of motion because, as it contains an extra scalar variable, the future evolution of the charge is not determined. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in the Lorentz-Dirac equation, i.e., preacceleration and runaways.