81 resultados para symmetrized Hamiltonian
Resumo:
In this paper we give some ideas that can be useful to solve Schrödinger equations in the case when the Hamiltonian contains a large term. We obtain an expansion of the solution in reciprocal powers of the large coupling constant. The procedure followed consists in considering that the small part of the Hamiltonian engenders a motion adiabatic to the motion generated by the large part of the same.
Resumo:
We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
The physical contributions to the KNiF3 magnetic exchange coupling integral have been obtained from specially designed ab initio cluster model calculations. Three important mechanisms have been identified. These are the delocalization of the magnetic orbitals into the anion p band, the variational contribution of the second-order interactions, and the many-body terms hidden in the two-body operator and the Heisenberg Hamiltonian.
Resumo:
The results are presented of a combined periodic and cluster model approach to the electronic structure and magnetic interactions in the spin-chain compounds Ca2CuO3 and Sr2CuO3. An extended t-J model is presented that includes in-chain and interchain hopping and magnetic interaction processes with parameters extracted from ab initio calculations. For both compounds, the in-chain magnetic interaction is found to be around -240 meV, larger than in any of the other cuprates reported in the literature. The interchain magnetic coupling is found to be weakly antiferromagnetic, -1 meV. The effective in-chain hopping parameters are estimated to be ~650 meV for both compounds, whereas the value of the interchain hopping parameter is 30 meV for Sr2CuO3 and 40 meV for Ca2CuO3, in line with the larger interchain distance in the former compound. These effective parameters are shown to be consistent with expressions recently suggested for the Néel temperature and the magnetic moments, and with relations that emerge from the t-J model Hamiltonian. Next, we investigate the physical nature of the band gap. Periodic calculations indicate that an interpretation in terms of a charge-transfer insulator is the most appropriate one, in contrast to the suggestion of a covalent correlated insulator recently reported in the literature.
Resumo:
The magnetic structure of the edge-sharing cuprate compound Li2CuO2 has been investigated with highly correlated ab initio electronic structure calculations. The first- and second-neighbor in-chain magnetic interactions are calculated to be 142 and -22 K, respectively. The ratio between the two parameters is smaller than suggested previously in the literature. The interchain interactions are antiferromagnetic in nature and of the order of a few K only. Monte Carlo simulations using the ab initio parameters to define the spin model Hamiltonian result in a Nel temperature in good agreement with experiment. Spin population analysis situates the magnetic moment on the copper and oxygen ions between the completely localized picture derived from experiment and the more delocalized picture based on local-density calculations.
Resumo:
We present an alternative approach to the usual treatments of singular Lagrangians. It is based on a Hamiltonian regularization scheme inspired on the coisotropic embedding of presymplectic systems. A Lagrangian regularization of a singular Lagrangian is a regular Lagrangian defined on an extended velocity phase space that reproduces the original theory when restricted to the initial configuration space. A Lagrangian regularization does not always exists, but a family of singular Lagrangians is studied for which such a regularization can be described explicitly. These regularizations turn out to be essentially unique and provide an alternative setting to quantize the corresponding physical systems. These ideas can be applied both in classical mechanics and field theories. Several examples are discussed in detail. 1995 American Institute of Physics.
Resumo:
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
Resumo:
We consider 2n masses located at the vertices of two nested regular polyhedra with the same number of vertices. Assuming that the masses in each polyhedron are equal, we prove that for each ratio of the masses of the inner and the outer polyhedron there exists a unique ratio of the length of the edges of the inner and the outer polyhedron such that the configuration is central.
Resumo:
The material presented in the these notes covers the sessions Modelling of electromechanical systems, Passive control theory I and Passive control theory II of the II EURON/GEOPLEX Summer School on Modelling and Control of Complex Dynamical Systems.We start with a general description of what an electromechanical system is from a network modelling point of view. Next, a general formulation in terms of PHDS is introduced, and some of the previous electromechanical systems are rewritten in this formalism. Power converters, which are variable structure systems (VSS), can also be given a PHDS form.We conclude the modelling part of these lectures with a rather complex example, showing the interconnection of subsystems from several domains, namely an arrangement to temporally store the surplus energy in a section of a metropolitan transportation system based on dc motor vehicles, using either arrays of supercapacitors or an electric poweredflywheel. The second part of the lectures addresses control of PHD systems. We first present the idea of control as power connection of a plant and a controller. Next we discuss how to circumvent this obstacle and present the basic ideas of Interconnection and Damping Assignment (IDA) passivity-based control of PHD systems.
Resumo:
Substantial collective flow is observed in collisions between lead nuclei at Large Hadron Collider (LHC) as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the global v1-flow, which at RHIC peaked at negative rapidities (named third flow component or antiflow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the quark-gluon plasma. Our calculations also take into account the initial state center-of-mass rapidity fluctuations, and demonstrate that these are crucial for v1 simulations. In order to better study the transverse momentum flow dependence we suggest a new"symmetrized" vS1(pt) function, and we also propose a new method to disentangle global v1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v1 flow both at the STAR Beam Energy Scan program and at LHC.
Resumo:
Estas notas corresponden a las exposiciones presentadas en el \emph{Primer Seminario de Integrabilidad}, dentro de lo que se denomina \emph{Aula de Sistemas Din\'amicos}. Durante este evento se realizaron seis conferencias, todas presentadas por miembros del grupo de Sistemas Din\'amicos de la UPC. El programa desarrollado fue el siguiente:\\\begin{center}AULA DE SISTEMAS DIN\'AMICOS\end{center}\begin{center}\texttt{http://www.ma1.upc.es/recerca/seminaris/aulasd-cat.html}\end{center}\begin{center}SEMINARIO DE INTEGRABILIDAD\end{center}\begin{center}Martes 29 y Mi\'ercoles 30 de marzo de 2005\\Facultad de Matem\'aticas y Estad\'{\i}stica, UPC\\Aula: Seminario 1\end{center}\bigskip\begin{center}PROGRAMA Y RES\'UMENES\end{center}{\bf Martes 29 de marzo}\begin{itemize}\item15:30. Juan J. Morales-Ruiz. \emph{El problema de laintegrabilidad en Sistemas Din\'amicos}\medskip {\bf Resumen.} En esta presentaci\'on se pretende dar unaidea de conjunto, pero sin entrar en detalles, sobre las diversasnociones de integrabilidad, asociadas a nombres de matem\'aticostan ilustres como Liouville, Galois-Picard-Vessiot, Lie, Darboux,Kowalevskaya, Painlev\'e, Poincar\'e, Kolchin, Lax, etc. Adem\'astambi\'en mencionaremos la revoluci\'on que supuso en los a\~nossesenta del siglo pasado el descubrimiento de Gardner, Green,Kruskal y Miura sobre un nuevo m\'etodo para resolver en algunoscasos determinadas ecuaciones en derivadas parciales. \medskip\item16:00. David G\'omez-Ullate. \emph{Superintegrabilidad, pares deLax y modelos de $N-$cuerpos en el plano}\medskip{\bf Resumen.} Introduciremos algunas t\'ecnicas cl\'asicas paraconstruir modelos de N-cuerpos integrables, como los pares de Laxo la din\'amica de los ceros de un polinomio. Revisaremos lanoci\'on de integrabilidad Liouville y superintegrabilidad, ydiscutiremos un nuevo m\'etodo debido a F. Calogero para contruirmodelos de N-cuerpos en el plano con muchas \'orbitasperi\'odicas. La exposici\'on se acompa\~nar\'a de animaciones delmovimiento de los cuerpos, y se plantear\'an algunos problemasabiertos.\medskip\item17:00. Pausa\medskip\item17:30. Yuri Fedorov. \emph{An\'alisis de Kovalevskaya--Painlev\'ey Sistemas Algebraicamente Integrables}\medskip{\bf Resumen.} Muchos sistemas integrables poseen una propiedadremarcable: todas sus soluciones son funciones meromorfas deltiempo como una variable compleja. Tal comportamiento, que serefiere como propiedad de Kovalevskaya-Painleve (KP) y que se usafrecuentemente como una ensayo de integrabilidad, no es accidentaly tiene unas ra\'{\i}ces geom\'etricas profundas. En esta charladescribiremos una clase de tales sistemas (conocidos como lossistemas algebraicamente integrables) y subrayaremos suspropiedades geom\'etricas principales que permiten predecir laestructura de las soluciones complejas y adem\'as encontrarlasexpl\'{\i}citamente. Eso lo ilustraremos con algunos sistemas dela mec\'anica cl\'asica. Tambi\'en mencionaremos unasgeneralizaciones \'utiles de la noci\'on de integrabilidadalgebraica y de la propiedad KP.\end{itemize}\medskip{\bf Mi\'ercoles 30 de marzo}\begin{itemize}\item 15:30. Rafael Ram\'{\i}rez-Ros. \emph{El m\'etodo de Poincar\'e}\medskip{\bf Resumen.} Dado un sistema Hamiltoniano aut\'onomo cercano acompletamente integrable Poincar\'e prob\'o que, en general, noexiste ninguna integral primera adicional uniforme en elpar\'ametro de perturbaci\'on salvo el propio Hamiltoniano.Esbozaremos las ideas principales del m\'etodo de prueba ycomentaremos algunas extensiones y generalizaciones.\newpage\item16:30. Chara Pantazi. \emph{El M\'etodo de Darboux}\medskip{\bf Resumen.} Darboux, en 1878, present\'o su m\'etodo paraconstruir integrales primeras de campos vectoriales polinomialesutilizando sus curvas invariantes algebraicas. En estaexposici\'on presentaremos algunas extensiones del m\'etodocl\'asico de Darboux y tambi\'en algunas aplicaciones.\medskip\item17:30. Pausa\medskip\item18:00. Juan J. Morales-Ruiz. \emph{M\'etodos recientes paradetectar la no integrabilidad}\medskip{\bf Resumen.} En 1982 Ziglin utiliza la estructura de laecuaci\'on en variaciones de Poincar\'e (sobre una curva integralparticular) como una herramienta fundamental para detectar la nointegrabilidad de un sistema Hamiltoniano. En esta charla sepretende dar una idea de esta aproximaci\'on a la nointegrabilidad, junto con t\'ecnicas m\'as recientes queinvolucran la teor\'{\i}a de Galois de ecuaciones diferencialeslineales, haciendo \'enfasis en los ejemplos m\'as que en lateor\'{\i}a general. Ilustraremos estos m\'etodos con resultadossobre la no integrabilidad de algunos problemas de $N$ cuerpos enMec\'anica Celeste.\end{itemize}
Resumo:
Experimental results of a new controller able to support bidirectional power flow in a full-bridge rectifier with boost-like topology are obtained. The controller is computed using port Hamiltonian passivity techniques for a suitable generalized state space averaging truncation system, which transforms the control objectives, namely constant output voltage dc-bus and unity input power factor, into a regulation problem. Simulation results for the full system show the essential correctness of the simplifications introduced to obtain the controller, although some small experimental discrepancies point to several aspects that need further improvement.
Resumo:
This report details the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/AC converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM), coupled mechanically to a flywheel and electrically to the power grid and to a local varying load). Both subsystems have been essentially described in previous reports (deliverables D 0.5 and D 4.3.1), although some previously unpublished details are presented here. The B2B is a variable structure system (VSS), due to the presence of control-actuated switches: however from a modelling and simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond-graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presents and coupled through a power-preserving interconnection, and the Hamiltonian description of the whole system is obtained; detailed bond-graphs of all the subsystems and the complete system are provided.