93 resultados para single-walled
Resumo:
The present study explores the statistical properties of a randomization test based on the random assignment of the intervention point in a two-phase (AB) single-case design. The focus is on randomization distributions constructed with the values of the test statistic for all possible random assignments and used to obtain p-values. The shape of those distributions is investigated for each specific data division defined by the moment in which the intervention is introduced. Another aim of the study consisted in testing the detection of inexistent effects (i.e., production of false alarms) in autocorrelated data series, in which the assumption of exchangeability between observations may be untenable. In this way, it was possible to compare nominal and empirical Type I error rates in order to obtain evidence on the statistical validity of the randomization test for each individual data division. The results suggest that when either of the two phases has considerably less measurement times, Type I errors may be too probable and, hence, the decision making process to be carried out by applied researchers may be jeopardized.
Resumo:
Effect size indices are indispensable for carrying out meta-analyses and can also be seen as an alternative for making decisions about the effectiveness of a treatment in an individual applied study. The desirable features of the procedures for quantifying the magnitude of intervention effect include educational/clinical meaningfulness, calculus easiness, insensitivity to autocorrelation, low false alarm and low miss rates. Three effect size indices related to visual analysis are compared according to the aforementioned criteria. The comparison is made by means of data sets with known parameters: degree of serial dependence, presence or absence of general trend, changes in level and/or in slope. The percent of nonoverlapping data showed the highest discrimination between data sets with and without intervention effect. In cases when autocorrelation or trend is present, the percentage of data points exceeding the median may be a better option to quantify the effectiveness of a psychological treatment.
Resumo:
Visual inspection remains the most frequently applied method for detecting treatment effects in single-case designs. The advantages and limitations of visual inference are here discussed in relation to other procedures for assessing intervention effectiveness. The first part of the paper reviews previous research on visual analysis, paying special attention to the validation of visual analysts" decisions, inter-judge agreement, and false alarm and omission rates. The most relevant factors affecting visual inspection (i.e., effect size, autocorrelation, data variability, and analysts" expertise) are highlighted and incorporated into an empirical simulation study with the aim of providing further evidence about the reliability of visual analysis. Our results concur with previous studies that have reported the relationship between serial dependence and increased Type I rates. Participants with greater experience appeared to be more conservative and used more consistent criteria when assessing graphed data. Nonetheless, the decisions made by both professionals and students did not match sufficiently the simulated data features, and we also found low intra-judge agreement, thus suggesting that visual inspection should be complemented by other methods when assessing treatment effectiveness.
Resumo:
If single case experimental designs are to be used to establish guidelines for evidence-based interventions in clinical and educational settings, numerical values that reflect treatment effect sizes are required. The present study compares four recently developed procedures for quantifying the magnitude of intervention effect using data with known characteristics. Monte Carlo methods were used to generate AB designs data with potential confounding variables (serial dependence, linear and curvilinear trend, and heteroscedasticity between phases) and two types of treatment effect (level and slope change). The results suggest that data features are important for choosing the appropriate procedure and, thus, inspecting the graphed data visually is a necessary initial stage. In the presence of serial dependence or a change in data variability, the Nonoverlap of All Pairs (NAP) and the Slope and Level Change (SLC) were the only techniques of the four examined that performed adequately. Introducing a data correction step in NAP renders it unaffected by linear trend, as is also the case for the Percentage of Nonoverlapping Corrected Data and SLC. The performance of these techniques indicates that professionals" judgments concerning treatment effectiveness can be readily complemented by both visual and statistical analyses. A flowchart to guide selection of techniques according to the data characteristics identified by visual inspection is provided.
Resumo:
The present study focuses on single-case data analysis and specifically on two procedures for quantifying differences between baseline and treatment measurements The first technique tested is based on generalized least squares regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The comparison is carried out in the context of generated data representing a variety of patterns (i.e., independent measurements, different serial dependence underlying processes, constant or phase-specific autocorrelation and data variability, different types of trend, and slope and level change). The results suggest that the two techniques perform adequately for a wide range of conditions and researchers can use both of them with certain guarantees. The regression-based procedure offers more efficient estimates, whereas the proposed non-regression procedure is more sensitive to intervention effects. Considering current and previous findings, some tentative recommendations are offered to applied researchers in order to help choosing among the plurality of single-case data analysis techniques.
Resumo:
In this article the main possibilities of single crystal and powder diffraction analysis using conventional laboratory x-ray sources are introduced. Several examples of applications with different solid samples and in different fields of applications are shown illustrating the multidisciplinary capabilities of both techniques.
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
We investigate the spatial dependence of the exciton lifetimes in single ZnO nanowires. We have found that the free exciton and bound exciton lifetimes exhibit a maximum at the center of nanowires, while they decrease by 30% towards the tips. This dependence is explained by considering the cavity-like properties of the nanowires in combination with the Purcell effect. We show that the lifetime of the bound-excitons scales with the localization energy to the power of 3/2, which validates the model of Rashba and Gurgenishvili at the nanoscale.
Resumo:
Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces.
Resumo:
A crucial step for understanding how lexical knowledge is represented is to describe the relative similarity of lexical items, and how it influences language processing. Previous studies of the effects of form similarity on word production have reported conflicting results, notably within and across languages. The aim of the present study was to clarify this empirical issue to provide specific constraints for theoretical models of language production. We investigated the role of phonological neighborhood density in a large-scale picture naming experiment using fine-grained statistical models. The results showed that increasing phonological neighborhood density has a detrimental effect on naming latencies, and re-analyses of independently obtained data sets provide supplementary evidence for this effect. Finally, we reviewed a large body of evidence concerning phonological neighborhood density effects in word production, and discussed the occurrence of facilitatory and inhibitory effects in accuracy measures. The overall pattern shows that phonological neighborhood generates two opposite forces, one facilitatory and one inhibitory. In cases where speech production is disrupted (e.g. certain aphasic symptoms), the facilitatory component may emerge, but inhibitory processes dominate in efficient naming by healthy speakers. These findings are difficult to accommodate in terms of monitoring processes, but can be explained within interactive activation accounts combining phonological facilitation and lexical competition.
Resumo:
Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.
Resumo:
The well-known structure of an array combiner along with a maximum likelihood sequence estimator (MLSE) receiveris the basis for the derivation of a space-time processor presentinggood properties in terms of co-channel and intersymbol interferencerejection. The use of spatial diversity at the receiver front-endtogether with a scalar MLSE implies a joint design of the spatialcombiner and the impulse response for the sequence detector. Thisis faced using the MMSE criterion under the constraint that thedesired user signal power is not cancelled, yielding an impulse responsefor the sequence detector that is matched to the channel andcombiner response. The procedure maximizes the signal-to-noiseratio at the input of the detector and exhibits excellent performancein realistic multipath channels.