131 resultados para nonequilibrium Bose-Einstein condensates
Resumo:
Ordering in a binary alloy is studied by means of a molecular-dynamics (MD) algorithm which allows to reach the domain growth regime. Results are compared with Monte Carlo simulations using a realistic vacancy-atom (MC-VA) mechanism. At low temperatures fast growth with a dynamical exponent x>1/2 is found for MD and MC-VA. The study of a nonequilibrium ordering process with the two methods shows the importance of the nonhomogeneity of the excitations in the system for determining its macroscopic kinetics.
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation
Resumo:
We study the nonequilibrium behavior of the three-dimensional Gaussian random-field Ising model at T=0 in the presence of a uniform external field using a two-spin-flip dynamics. The deterministic, history-dependent evolution of the system is compared with the one obtained with the standard one-spin-flip dynamics used in previous studies of the model. The change in the dynamics yields a significant suppression of coercivity, but the distribution of avalanches (in number and size) stays remarkably similar, except for the largest ones that are responsible for the jump in the saturation magnetization curve at low disorder in the thermodynamic limit. By performing a finite-size scaling study, we find strong evidence that the change in the dynamics does not modify the universality class of the disorder-induced phase transition.
Resumo:
In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out discontinuity.
Resumo:
We study the collision of a gravitational wave pulse and a soliton wave on a spatially homogeneous background. This collision is described by an exact solution of Einsteins equations in a vacuum which is generated from a nondiagonal seed by means of a soliton transformation. The effect produced by the soliton on the amplitude and polarization of the wave is considered.
Resumo:
We introduce a class of exactly solvable models exhibiting an ordering noise-induced phase transition in which order arises as a result of a balance between the relaxing deterministic dynamics and the randomizing character of the fluctuations. A finite-size scaling analysis of the phase transition reveals that it belongs to the universality class of the equilibrium Ising model. All these results are analyzed in the light of the nonequilibrium probability distribution of the system, which can be obtained analytically. Our results could constitute a possible scenario of inverted phase diagrams in the so-called lower critical solution temperature transitions.
Resumo:
We study dynamics of domain walls in pattern forming systems that are externally forced by a moving space-periodic modulation close to 2:1 spatial resonance. The motion of the forcing induces nongradient dynamics, while the wave number mismatch breaks explicitly the chiral symmetry of the domain walls. The combination of both effects yields an imperfect nonequilibrium Ising-Bloch bifurcation, where all kinks (including the Ising-like one) drift. Kink velocities and interactions are studied within the generic amplitude equation. For nonzero mismatch, a transition to traveling bound kink-antikink pairs and chaotic wave trains occurs.
Resumo:
A Brownian pump of particles powered by a stochastic flashing ratchet mechanism is studied. The pumping device is embedded in a finite region and bounded by particle reservoirs. In the steady state, we exactly calculate the spatial density profile, the concentration ratio between both reservoirs and the particle flux. We propose a simulation framework for the consistent evaluation of such observable quantities.
Resumo:
We have systematically analyzed six different reticular models with quenched disorder and no thermal fluctuations exhibiting a field-driven first-order phase transition. We have studied the nonequilibrium transition, appearing when varying the amount of disorder, characterized by the change from a discontinuous hysteresis cycle (with one or more large avalanches) to a smooth one (with only tiny avalanches). We have computed critical exponents using finite size scaling techniques and shown that they are consistent with universal values depending only on the space dimensionality d.
Resumo:
We study the effects of time and space correlations of an external additive colored noise on the steady-state behavior of a time-dependent Ginzburg-Landau model. Simulations show the existence of nonequilibrium phase transitions controlled by both the correlation time and length of the noise. A Fokker-Planck equation and the steady probability density of the process are obtained by means of a theoretical approximation.
Resumo:
We study analytically a thermal Brownian motor model and calculate exactly the Onsager coefficients. We show how the reciprocity relation holds and that the determinant of the Onsager matrix vanishes. Such a condition implies that the device is built with tight coupling. This explains why Carnot¿s efficiency can be achieved in the limit of infinitely slow velocities. We also prove that the efficiency at maximum power has the maximum possible value, which corresponds to the Curzon-Alhborn bound. Finally, we discuss the model acting as a Brownian refrigerator.
Resumo:
The possibility of local elastic instabilities is considered in a first¿order structural phase transition, typically a thermoelastic martensitic transformation, with associated interfacial and volumic strain energy. They appear, for instance, as the result of shape change accommodation by simultaneous growth of different crystallographic variants. The treatment is phenomenological and deals with growth in both thermoelastic equilibrium and in nonequilibrium conditions produced by the elastic instability. Scaling of the transformed fraction curves against temperature is predicted only in the case of purely thermoelastic growth. The role of the transformation latent heat on the relaxation kinetics is also considered, and it is shown that it tends to increase the characteristic relaxation times as adiabatic conditions are approached, by keeping the system closer to a constant temperature. The analysis also reveals that the energy dissipated in the relaxation process has a double origin: release of elastic energy Wi and entropy production Si. The latter is shown to depend on both temperature rate and thermal conduction in the system.
Resumo:
Stochastic processes defined by a general Langevin equation of motion where the noise is the non-Gaussian dichotomous Markov noise are studied. A non-FokkerPlanck master differential equation is deduced for the probability density of these processes. Two different models are exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is observed for a critical value of its correlation time. Critical slowing down does not appear in this point but in another one.
Resumo:
A very simple model of a classical particle in a heat bath under the influence of external noise is studied. By means of a suitable hypothesis, the heat bath is reduced to an internal colored noise (OrnsteinUhlenbeck noise). In a second step, an external noise is coupled to the bath. The steady state probability distributions are obtained.