66 resultados para morphology target tracking
Resumo:
Many Ophidiidae are active in dark environments and display complex sonic apparatus morphologies. However, sound recordings are scarce and little is known about acoustic communication in this family. This paper focuses on Ophidion rochei which is known to display an important sexual dimorphism in swimbladder and anterior skeleton. The aims of this study were to compare the sound producing morphology, and the resulting sounds in juveniles, females and males of O. rochei.Results: Males, females, and juveniles possessed different morphotypes. Females and juveniles contrasted with males because they possessed dramatic differences in morphology of their sonic muscles, swimbladder, supraoccipital crest, and first vertebrae and associated ribs. Further, they lacked the ‘rocker bone’ typically found in males. Sounds from each morphotype were highly divergent. Males generally produced non harmonic, multiple-pulsed sounds that lasted for several seconds (3.5 ± 1.3 s) with a pulse period of ca. 100 ms. Juvenile and female sounds were recorded for the first time in ophidiids. Female sounds were harmonic, had shorter pulse period (±3.7 ms), and never exceeded a few dozen milliseconds (18 ± 11 ms). Moreover, unlike male sounds, female sounds did not have alternating long and short pulse periods. Juvenile sounds were weaker but appear to be similar to female sounds.Conclusions: Although it is not possible to distinguish externally male from female in O. rochei, they show a sonic apparatus and sounds that are dramatically different. This difference is likely due to their nocturnal habits that may have favored the evolution of internal secondary sexual characters that help to distinguish males from females and that could facilitate mate choice by females. Moreover, the comparison of different morphotypes in this study shows that these morphological differences result from a peramorphosis that takes place during the development of the gonads
Resumo:
Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.
Resumo:
We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.
Resumo:
We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.
Resumo:
Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.
Resumo:
We have synthesized a family of rhein-huprine hybrids to hit several key targets for Alzheimer"s disease. Biological screening performed in vitro and in Escherichia coli cells has shown that these hybrids exhibit potent inhibitory activities against human acetylcholinesterase butyrylcholinesterase, and BACE-1, dual Aβ42 and tau anti-aggregating activity, and brain permeability. Ex vivo studies with the leads (+)- and (-)-7e in brain slices of C57bl6 mice have revealed that they efficiently protect against the Aβ-induced synaptic dysfunction , preventing the loss of synaptic proteins and/or have a positive effect on the induction of long term potentiation. In vivo studies in APP-PS1 transgenic mice treated i.p. for 4 weeks with (+)- and (-)-7e have shown a central soluble Aβ lowering effect, accompanied by an increase in the levels of mature amyloid precursor protein (APP). Thus, (+)- and (-)-7e emerge as very promising disease-modifying anti-Alzheimer drug candidates.