63 resultados para complete cycle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G1 phase. Aberrant expression of CDK4 and CDK6 is a hall- mark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G1 phase. The metabolic effects of calcein AM (the calcein acetoxymethyl-ester) on HCT116 cells were also evaluated and the flux between the oxidative and non-oxidative branches of the pentose phos-phate pathway was significantly altered. To elucidate whe-ther these metabolic changes were due to the inhibition of CDK4 and CDK6, we also characterized the metabolic profile of a CDK4, CDK6 and CDK2 triple knockout of mouse embryonic fibroblasts. The results show that the metabolic profile associated with the depletion of CDK4, CDK6 and CDK2 coincides with the metabolic changes induced by calcein AM on HCT116 cells, thus confirming that the inhibition of CDK4 and CDK6 disrupts the balance between the oxidative and non-oxidative branches of the pentose phosphate pathway. Taken together, these results indicate that low doses of calcein can halt cell division and kill tumor cells. Thus, selective inhibition of CDK4 and CDK6 may be of greater pharmacological interest, since inhibitors of these kinases affect both cell cycle progression and the robust metabolic profile of tumors.